Review
BibTex RIS Cite

Nanotechnology In Medical Applications: Recent Developments In Devices And Materials

Year 2023, Issue: 005, 1 - 32, 31.12.2023

Abstract

Nanotechnology has had an important place in the scientific world since the 1980s. With the development of technology and science over time, a great change and progress has been made in the field of nano technology. With its different usage areas, the word nanotechnology is still maintaining its place in the first ranks today. This technology, which contributes to many branches of science such as physics, chemistry, biology, medicine and engineering, deals with nano-sized substances. Nano-sized materials with unique physicochemical properties, which have been designed and used in medicine, have been developed for the prevention, diagnosis and treatment of disease. It aims to minimize the side effects of nanotechnological therapeutic drugs designed for very important diseases such as cancer, dermatology, infectious diseases. In recent years, there has been great interest in the development of new drug delivery systems. Cancer disease, which has an important place in nanotechnology applications, is caused by uncontrolled cell division and proliferation. The treatment methods used for this disease, which is caused by genetic and environmental reasons, vary depending on the genetics of the person and the type of cancer. Nanotechnology in the treatment of cancer disease; studies on healing damaged tissue, preventing division, preventing damage to healthy tissues during the treatment process have been examined. Coronaviruses are a family of viruses that cause upper respiratory tract infections. The use of potential nanoparticle-based vaccines and drugs to treat infectious diseases caused by coronaviruses has been studied. Nanoparticle-based therapeutic drug applications are used in dermatology as well as in the diagnosis, prevention and treatment of cancer and coronaviruses. MRI, CT and PET are the commonly used diagnostic imaging methods in the diagnosis of these diseases. Contrast media are usually used in diagnostic imaging methods. These contrast agents have been developed thanks to nanotechnology. The advantages provided by nanotechnology are a source of hope for the diagnosis and treatment of these diseases. In this study, the transfer of the drug to the target structure where it will act, the use of nanomaterials in the prevention or treatment of various diseases and the production of contrast media of diagnostic imaging devices were mentioned.

References

  • G. L. Hornyak, H. F. Tibbals, J. Dutta, and J. J. Moore, Introduction to Nanoscience and Nanotechnology. CRC Press, 2008. doi: 10.1201/9781420047806.
  • J. Silvestre, N. Silvestre, and J. de Brito, ‘Review on concrete nanotechnology’, Eur. J. Environ. Civ. Eng., vol. 20, no. 4, pp. 455–485, Apr. 2016, doi: 10.1080/19648189.2015.1042070.
  • F. Sen, ‘Nanomaterials for direct alcohol fuel cells : characterization, design, and electrocatalysis’, 2021.
  • K. Arikan, H. Burhan, R. Bayat, and F. Sen, ‘Glucose nano biosensor with non-enzymatic excellent sensitivity prepared with nickel–cobalt nanocomposites on f-MWCNT’, Chemosphere, vol. 291, p. 132720, Mar. 2022, doi: 10.1016/J.CHEMOSPHERE.2021.132720.
  • K. Ni et al., ‘Palladium based bimetallic nanocatalysts: Synthesis, characterization and hydrogen fuel production’, Fuel, vol. 341, p. 127577, Jun. 2023, doi: 10.1016/j.fuel.2023.127577.
  • B. Sen, A. Şavk, and F. Sen, ‘Highly efficient monodisperse Pt nanoparticles confined in the carbon black hybrid material for hydrogen liberation’, J. Colloid Interface Sci., vol. 520, pp. 112–118, Jun. 2018, doi: 10.1016/j.jcis.2018.03.004.
  • F. Gulbagca, S. Ozdemir, M. Gulcan, and F. Sen, ‘Synthesis and characterization of Rosa canina-mediated biogenic silver nanoparticles for anti-oxidant, antibacterial, antifungal, and DNA cleavage activities’, Heliyon, vol. 5, no. 12, p. e02980, 2019.
  • R. Nagraik, A. Sharma, D. Kumar, S. Mukherjee, F. Sen, and A. P. Kumar, ‘Amalgamation of biosensors and nanotechnology in disease diagnosis: Mini-review’, Sensors Int., vol. 2, p. 100089, Jan. 2021, doi: 10.1016/J.SINTL.2021.100089.
  • H. Goksu, Y. Y\ild\iz, B. Çelik, M. Yazici, B. Kilbas, and F. Sen, ‘Eco-friendly hydrogenation of aromatic aldehyde compounds by tandem dehydrogenation of dimethylamine-borane in the presence of a reduced graphene oxide furnished platinum nanocatalyst’, Catal. Sci. \& Technol., vol. 6, no. 7, pp. 2318–2324, 2016.
  • J. T. Abrahamson et al., ‘Excess Thermopower and the Theory of Thermopower Waves’, ACS Nano, vol. 7, no. 8, pp. 6533–6544, Aug. 2013, doi: 10.1021/nn402411k.
  • F. Şen and G. Gökaǧaç, ‘Improving Catalytic Efficiency in the Methanol Oxidation Reaction by Inserting Ru in Face-Centered Cubic Pt Nanoparticles Prepared by a New Surfactant, tert-Octanethiol’, Energy and Fuels, vol. 22, no. 3, pp. 1858–1864, May 2008, doi: 10.1021/EF700575T.
  • M. H. Calimli, M. S. Nas, H. Burhan, S. D. Mustafov, Ö. Demirbas, and F. Sen, ‘Preparation, characterization and adsorption kinetics of methylene blue dye in reduced-graphene oxide supported nanoadsorbents’, J. Mol. Liq., vol. 309, p. 113171, 2020.
  • E. Erken, Y. Yıldız, B. Kilbaş, and F. Şen, ‘Synthesis and Characterization of Nearly Monodisperse Pt Nanoparticles for C 1 to C 3 Alcohol Oxidation and Dehydrogenation of Dimethylamine-borane (DMAB)’, J. Nanosci. Nanotechnol., vol. 16, no. 6, pp. 5944–5950, Jun. 2016, doi: 10.1166/jnn.2016.11683.
  • B. Sen, S. Kuzu, E. Demir, E. Y\ild\ir\ir, and F. Sen, ‘Highly efficient catalytic dehydrogenation of dimethyl ammonia borane via monodisperse palladium--nickel alloy nanoparticles assembled on PEDOT’, Int. J. Hydrogen Energy, vol. 42, no. 36, pp. 23307–23314, 2017.
  • B. Şen, A. Aygün, T. O. Okyay, A. Şavk, R. Kartop, and F. Şen, ‘Monodisperse palladium nanoparticles assembled on graphene oxide with the high catalytic activity and reusability in the dehydrogenation of dimethylamine-borane’, Int. J. Hydrogen Energy, vol. 43, no. 44, pp. 20176–20182, Nov. 2018, doi: 10.1016/j.ijhydene.2018.03.175.
  • N. Korkmaz et al., ‘Biogenic silver nanoparticles synthesized via Mimusops elengi fruit extract, a study on antibiofilm, antibacterial, and anticancer activities’, J. Drug Deliv. Sci. Technol., vol. 59, p. 101864, Oct. 2020, doi: 10.1016/j.jddst.2020.101864.
  • S. Günbatar, A. Aygun, Y. Karataş, M. Gülcan, and F. Şen, ‘Carbon-nanotube-based rhodium nanoparticles as highly-active catalyst for hydrolytic dehydrogenation of dimethylamineborane at room temperature’, J. Colloid Interface Sci., vol. 530, pp. 321–327, Nov. 2018, doi: 10.1016/j.jcis.2018.06.100.
  • Ş. Tokalıoğlu, E. Yavuz, S. Demir, and Ş. Patat, ‘Zirconium-based highly porous metal-organic framework (MOF-545) as an efficient adsorbent for vortex assisted-solid phase extraction of lead from cereal, beverage and water samples’, Food Chem., 2017, doi: 10.1016/j.foodchem.2017.06.005.
  • R. Ayranci, G. Başkaya, M. Güzel, S. Bozkurt, F. Şen, and M. Ak, ‘Carbon Based Nanomaterials for High Performance Optoelectrochemical Systems’, ChemistrySelect, vol. 2, no. 4, pp. 1548–1555, Feb. 2017, doi: 10.1002/SLCT.201601632.
  • F. Şen, G. Gökağaç, and S. Şen, ‘High performance Pt nanoparticles prepared by new surfactants for C1 to C3 alcohol oxidation reactions’, J. Nanoparticle Res., vol. 15, no. 10, p. 1979, Oct. 2013, doi: 10.1007/s11051-013-1979-5.
  • F. Şen and G. Gökağaç, ‘Pt nanoparticles synthesized with new surfactants: improvement in C1–C3 alcohol oxidation catalytic activity’, J. Appl. Electrochem., vol. 44, no. 1, pp. 199–207, Jan. 2014, doi: 10.1007/s10800-013-0631-5.
  • F. Sen, A. A. Boghossian, S. Sen, Z. W. Ulissi, J. Zhang, and M. S. Strano, ‘Observation of oscillatory surface reactions of riboflavin, trolox, and singlet oxygen using single carbon nanotube fluorescence spectroscopy’, ACS Nano, vol. 6, no. 12, pp. 10632–10645, 2012.
  • M. B. Askari, P. Salarizadeh, A. Di Bartolomeo, and F. Şen, ‘Enhanced electrochemical performance of MnNi2O4/rGO nanocomposite as pseudocapacitor electrode material and methanol electro-oxidation catalyst’, Nanotechnology, vol. 32, no. 32, 2021, doi: 10.1088/1361-6528/abfded.
  • F. A. Unal, S. Ok, M. Unal, S. Topal, K. Cellat, and F. \cSen, ‘Synthesis, characterization, and application of transition metals (Ni, Zr, and Fe) doped TiO2 photoelectrodes for dye-sensitized solar cells’, J. Mol. Liq., vol. 299, p. 112177, 2020.
  • A. Şavk, H. Aydın, K. Cellat, and F. Şen, ‘A novel high performance non-enzymatic electrochemical glucose biosensor based on activated carbon-supported Pt-Ni nanocomposite’, J. Mol. Liq., vol. 300, p. 112355, Feb. 2020, doi: 10.1016/j.molliq.2019.112355.
  • S. Ertan, F. Şen, S. Şen, and G. Gökağaç, ‘Platinum nanocatalysts prepared with different surfactants for C1-C3 alcohol oxidations and their surface morphologies by AFM’, J. Nanoparticle Res., vol. 14, no. 6, pp. 1–12, Jun. 2012, doi: 10.1007/S11051-012-0922-5/FIGURES/8.
  • B. Demirkan et al., ‘Palladium supported on polypyrrole/reduced graphene oxide nanoparticles for simultaneous biosensing application of ascorbic acid, dopamine, and uric acid’, Sci. Rep., vol. 10, no. 1, p. 2946, Feb. 2020, doi: 10.1038/s41598-020-59935-y.
  • P. Taslimi et al., ‘Pyrazole[3,4-d]pyridazine derivatives: Molecular docking and explore of acetylcholinesterase and carbonic anhydrase enzymes inhibitors as anticholinergics potentials’, Bioorg. Chem., vol. 92, p. 103213, Nov. 2019, doi: 10.1016/j.bioorg.2019.103213.
  • G. A. Silva, ‘Introduction to nanotechnology and its applications to medicine’, Surg. Neurol., vol. 61, no. 3, pp. 216–220, Mar. 2004, doi: 10.1016/J.SURNEU.2003.09.036.
  • S. E. McNeil, ‘Nanotechnology for the biologist’, J. Leukoc. Biol., vol. 78, no. 3, pp. 585–594, May 2005, doi: 10.1189/jlb.0205074.
  • B. Sen, E. Kuyuldar, B. Demirkan, T. O. Okyay, A. \cSavk, and F. Sen, ‘Highly efficient polymer supported monodisperse ruthenium-nickel nanocomposites for dehydrocoupling of dimethylamine borane’, J. Colloid Interface Sci., vol. 526, pp. 480–486, 2018.
  • E. Serrano, G. Rus, and J. García-Martínez, ‘Nanotechnology for sustainable energy’, Renew. Sustain. Energy Rev., vol. 13, no. 9, pp. 2373–2384, Dec. 2009, doi: 10.1016/j.rser.2009.06.003.
  • F. Sanchez and K. Sobolev, ‘Nanotechnology in concrete – A review’, Constr. Build. Mater., vol. 24, no. 11, pp. 2060–2071, Nov. 2010, doi: 10.1016/j.conbuildmat.2010.03.014.
  • R. Misra, S. Acharya, and S. K. Sahoo, ‘Cancer nanotechnology: application of nanotechnology in cancer therapy’, Drug Discov. Today, vol. 15, no. 19–20, pp. 842–850, Oct. 2010, doi: 10.1016/J.DRUDIS.2010.08.006.
  • S. Singhal, S. Nie, and M. D. Wang, ‘Nanotechnology Applications in Surgical Oncology’, Annu. Rev. Med., vol. 61, no. 1, pp. 359–373, Feb. 2010, doi: 10.1146/annurev.med.60.052907.094936.
  • N. Barkalina, C. Charalambous, C. Jones, and K. Coward, ‘Nanotechnology in reproductive medicine: Emerging applications of nanomaterials’, Nanomedicine Nanotechnology, Biol. Med., vol. 10, no. 5, pp. e921–e938, Jul. 2014, doi: 10.1016/j.nano.2014.01.001.
  • D. M. Smith, J. K. Simon, and J. R. Baker Jr, ‘Applications of nanotechnology for immunology’, Nat. Rev. Immunol., vol. 13, no. 8, pp. 592–605, Aug. 2013, doi: 10.1038/nri3488.
  • S. Nie, Y. Xing, G. J. Kim, and J. W. Simons, ‘Nanotechnology Applications in Cancer’, Annu. Rev. Biomed. Eng., vol. 9, no. 1, pp. 257–288, Aug. 2007, doi: 10.1146/annurev.bioeng.9.060906.152025.
  • L. Zhang and T. J. Webster, ‘Nanotechnology and nanomaterials: Promises for improved tissue regeneration’, Nano Today, vol. 4, no. 1, pp. 66–80, Feb. 2009, doi: 10.1016/j.nantod.2008.10.014.
  • J. Hulla, S. Sahu, and A. Hayes, ‘Nanotechnology: History and future’, Hum. Exp. Toxicol., vol. 34, no. 12, pp. 1318–1321, Dec. 2015, doi: 10.1177/0960327115603588.
  • D. E. Prober, ‘Astronomers look to nanotechnology’, Nat. Nanotechnol., vol. 3, no. 8, pp. 459–460, Aug. 2008, doi: 10.1038/nnano.2008.221.
  • J. K. Patel, A. Patel, and D. Bhatia, ‘Introduction to Nanomaterials and Nanotechnology’, in Emerging Technologies for Nanoparticle Manufacturing, Cham: Springer International Publishing, 2021, pp. 3–23. doi: 10.1007/978-3-030-50703-9_1.
  • M. S B, D. P. Birader, and Y. R. Aladakatti, ‘Nanotechnology and its applications in agriculture’, J. Farm Sci., vol. 30, no. 3, pp. 338–342, 2017, doi: 10.1201/9781315365954.
  • B. S. Sekhon, ‘Food nanotechnology – an overview’, Nanotechnol. Sci. Appl., vol. 3, no. 1, p. 1, 2010, Accessed: Sep. 20, 2021. [Online]. Available: /pmc/articles/PMC3781769/
  • J. K. Vasir and V. Labhasetwar, ‘Targeted drug delivery in cancer therapy’, Technol. Cancer Res. Treat., vol. 4, no. 4, pp. 363–374, 2005, doi: 10.1177/153303460500400405.
  • J. Swarbrick and J. C. Boylan, ‘Encyclopedia of pharmaceutical technology’, Choice Rev. Online, vol. 40, no. 11, pp. 40-6157-40–6157, 2003, doi: 10.5860/choice.40-6157.
  • K. CANEFE and G. DUMAN, ‘Selective Drug Delivery and Targeting’, Ankara Üniversitesi Eczac. Fakültesi Derg., vol. 23, no. 1, pp. 53–63, 1994.
  • T. J. Wickham, ‘Ligand-directed targeting of genes to the site of disease’, Nat. Med., vol. 9, no. 1, pp. 135–139, 2003, doi: 10.1038/nm0103-135.
  • Z. Tüylek, ‘İlaç Taşıyıcı Sistemler ve Nanoteknolojik Etkileşim Drug Delivery Systems and Nanotechnological Interactionfile’, Bozok Tıp Derg., vol. 7, no. 3, pp. 89–98, 2017.
  • B. Şahin, E. Demir, A. Aygün, H. Gündüz, and F. Şen, ‘Investigation of the effect of pomegranate extract and monodisperse silver nanoparticle combination on MCF-7 cell line’, J. Biotechnol., vol. 260, pp. 79–83, Oct. 2017, doi: 10.1016/J.JBIOTEC.2017.09.012.
  • J. Swarbrick, Tablet Manufacture by Direct Compression. 2019. doi: 10.1201/b19309-20.
  • J. E. Kipp, ‘The role of solid nanoparticle technology in the parenteral delivery of poorly water-soluble drugs’, Int. J. Pharm., vol. 284, no. 1–2, pp. 109–122, 2004, doi: 10.1016/j.ijpharm.2004.07.019.
  • J. Panyam and V. Labhasetwar, ‘Sustained cytoplasmic delivery of drugs with intracellular receptors using biodegradable nanoparticles.’, Mol. Pharm., vol. 1, no. 1, pp. 77–84, 2004, doi: 10.1021/mp034002c.
  • H. Cabral, K. Miyata, K. Osada, and K. Kataoka, ‘Block Copolymer Micelles in Nanomedicine Applications’, Chem. Rev., vol. 118, no. 14, pp. 6844–6892, 2018, doi: 10.1021/acs.chemrev.8b00199.
  • S. Hossen, M. K. Hossain, M. K. Basher, M. N. H. Mia, M. T. Rahman, and M. J. Uddin, ‘Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review’, J. Adv. Res., vol. 15, pp. 1–18, 2019, doi: 10.1016/j.jare.2018.06.005.
  • A. Tewabe, A. Abate, M. Tamrie, A. Seyfu, and E. A. Siraj, ‘Targeted drug delivery — from magic bullet to nanomedicine: Principles, challenges, and future perspectives’, J. Multidiscip. Healthc., vol. 14, pp. 1711–1724, 2021, doi: 10.2147/JMDH.S313968.
  • V. P. Torchilin, ‘Structure and design of polymeric surfactant-based drug delivery systems’, J. Control. Release, vol. 73, no. 2–3, pp. 137–172, 2001, doi: 10.1016/S0168-3659(01)00299-1.
  • Y. Cheng, Z. Xu, M. Ma, and T. Xu, ‘Dendrimers as drug carriers: Applications in different routes of drug administration’, J. Pharm. Sci., vol. 97, no. 1, pp. 123–143, 2008, doi: 10.1002/jps.21079.
  • R. C. Grekin and M. J. Auletta, ‘Local anesthesia in dermatologic surgery’, J. Am. Acad. Dermatol., vol. 19, no. 4, pp. 599–614, Oct. 1988, doi: 10.1016/S0190-9622(88)70213-3.
  • A. B. Mehta, N. J. Nadkarni, S. P. Patil, K. V. Godse, M. Gautam, and S. Agarwal, ‘Topical corticosteroids in dermatology’, Indian J. Dermatol. Venereol. Leprol., vol. 82, no. 4, pp. 371–378, 2016, doi: 10.4103/0378-6323.178903.
  • J. Schmitt, S. Rosumeck, G. Thomaschewski, B. Sporbeck, E. Haufe, and A. Nast, ‘Efficacy and safety of systemic treatments for moderate-to-severe psoriasis: Meta-analysis of randomized controlled trials’, Br. J. Dermatol., vol. 170, no. 2, pp. 274–303, 2014, doi: 10.1111/bjd.12663.
  • J. W. Wong and J. Y. M. Koo, ‘Psychopharmacological therapies in dermatology’, Dermatol. Online J., vol. 19, no. 5, pp. 7–10, 2013, doi: 10.5070/d3195018169.
  • J. Prohaska and A. H. Jan, ‘Kriyoterapi Sürekli Eğitim Etkinliği Belirteçler’, pp. 1–6, 2023.
  • L. A. Delouise, ‘Applications of nanotechnology in dermatology’, J. Invest. Dermatol., vol. 132, no. 3 PART 2, pp. 964–975, 2012, doi: 10.1038/jid.2011.425.
  • A. Nasir, A. Friedman, and S. Wang, ‘Nanotechnology in dermatology’, Nanotechnol. Dermatology, vol. 9781461450, pp. 1–291, 2013, doi: 10.1007/978-1-4614-5034-4.
  • S. Berksoy Hayta, M. Akyol, Ö. Üyesi, C. Üniversitesi Tıp Fakültesi, D. ve Zührevi Hastalıklar Anabilim Dalı, and D. ve Zührevi Hastalıklar Anabilim Dalı Yazışma Adresi, ‘Nanoteknolojinin Dermotoloji Alanında Kullanımı Nanotechnology Use In Dermatology’, pp. 44–55, 2018.
  • E. B. Souto, ‘Patenting nanomedicines: Legal aspects, intellectual property and grant opportunities’, Patenting Nanomedicines Leg. Asp. Intellect. Prop. Grant Oppor., vol. 9783642292, pp. 1–457, 2012, doi: 10.1007/978-3-642-29265-1.
  • J. R. Antonio, C. R. Antônio, I. L. S. Cardeal, J. M. A. Ballavenuto, and J. R. Oliveira, ‘Nanotechnology in dermatology’, An. Bras. Dermatol., vol. 89, no. 1, pp. 126–136, 2014, doi: 10.1590/abd1806-4841.20142228.
  • P. R. Bergstresser and J. Richard Taylor, ‘Epidermal ’turnover time’—a new examination’, Br. J. Dermatol., vol. 96, no. 5, pp. 503–506, May 1977, doi: 10.1111/j.1365-2133.1977.tb07152.x.
  • A. Slominski, D. J. Tobin, S. Shibahara, and J. Wortsman, ‘Melanin pigmentation in mammalian skin and its hormonal regulation’, Physiol. Rev., vol. 84, no. 4, pp. 1155–1228, 2004, doi: 10.1152/physrev.00044.2003.
  • E. Guttman-Yassky et al., ‘Broad defects in epidermal cornification in atopic dermatitis identified through genomic analysis’, J. Allergy Clin. Immunol., vol. 124, no. 6, 2009, doi: 10.1016/j.jaci.2009.09.031.
  • C. Bieber, K. G. Müller, J. Nicolai, M. Hartmann, and W. Eich, ‘How does your doctor talk with you? Preliminary validation of a brief patient self-report questionnaire on the quality of physician-patient interaction’, J. Clin. Psychol. Med. Settings, vol. 17, no. 2, pp. 125–136, 2010, doi: 10.1007/s10880-010-9189-0.
  • M. M. A. Elsayed, O. Y. Abdallah, V. F. Naggar, and N. M. Khalafallah, ‘Lipid vesicles for skin delivery of drugs: Reviewing three decades of research’, Int. J. Pharm., vol. 332, no. 1–2, pp. 1–16, 2007, doi: 10.1016/j.ijpharm.2006.12.005.
  • A. N. Lukashev and A. A. Zamyatnin, ‘Viral vectors for gene therapy: Current state and clinical perspectives’, Biochem., vol. 81, no. 7, pp. 700–708, 2016, doi: 10.1134/S0006297916070063.
  • K. Culver, ‘The ADA human gene therapy clinical protocol.’, Hum. Gene Ther., vol. 1, no. 3, pp. 327–362, 1990, doi: 10.1089/hum.1990.1.3-327.
  • W. Walther and U. Stein, ‘Viral vectors for gene transfer: A review of their use in the treatment of human diseases’, Drugs, vol. 60, no. 2, pp. 249–271, 2000, doi: 10.2165/00003495-200060020-00002.
  • K. Kostarelos, ‘Nanoscale nights of Covıd-19’, Nat. Nanotechnol., vol. 15, no. 5, pp. 343–344, 2020, doi: 10.1038/s41565-020-0687-4.
  • H. Yin, R. L. Kanasty, A. A. Eltoukhy, A. J. Vegas, J. R. Dorkin, and D. G. Anderson, ‘Non-viral vectors for gene-based therapy’, Nat. Rev. Genet., vol. 15, no. 8, pp. 541–555, 2014, doi: 10.1038/nrg3763.
  • M. Vincent, I. De Lázaro, and K. Kostarelos, ‘Graphene materials as 2D non-viral gene transfer vector platforms’, Gene Ther., vol. 24, no. 3, pp. 123–132, 2017, doi: 10.1038/gt.2016.79.
  • Y. S. Malik et al., ‘Emerging novel coronavirus (2019-nCoV)—current scenario, evolutionary perspective based on genome analysis and recent developments’, Vet. Q., vol. 40, no. 1, pp. 68–76, 2020, doi: 10.1080/01652176.2020.1727993.
  • Pinky, S. Gupta, V. Krishnakumar, Y. Sharma, A. K. Dinda, and S. Mohanty, ‘Mesenchymal Stem Cell Derived Exosomes: a Nano Platform for Therapeutics and Drug Delivery in Combating COVID-19’, Stem Cell Rev. Reports, vol. 17, no. 1, pp. 33–43, 2021, doi: 10.1007/s12015-020-10002-z.
  • A. Akbari and J. Rezaie, ‘Potential therapeutic application of mesenchymal stem cell-derived exosomes in SARS-CoV-2 pneumonia’, Stem Cell Res. Ther., vol. 11, no. 1, pp. 1–10, 2020, doi: 10.1186/s13287-020-01866-6.
  • P. Vader, E. A. Mol, G. Pasterkamp, and R. M. Schiffelers, ‘Extracellular vesicles for drug delivery’, Adv. Drug Deliv. Rev., vol. 106, pp. 148–156, 2016, doi: 10.1016/j.addr.2016.02.006.
  • E. J. Bunggulawa et al., ‘Recent advancements in the use of exosomes as drug delivery systems 06 Biological Sciences 0601 Biochemistry and Cell Biology’, J. Nanobiotechnology, vol. 16, no. 1, pp. 1–13, 2018, doi: 10.1186/s12951-018-0403-9.
  • L. Pascucci et al., ‘Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: A new approach for drug delivery’, J. Control. Release, vol. 192, pp. 262–270, 2014, doi: 10.1016/j.jconrel.2014.07.042.
  • S. Lakhal and M. J. A. Wood, ‘Exosome nanotechnology: An emerging paradigm shift in drug delivery: Exploitation of exosome nanovesicles for systemic in vivo delivery of RNAi heralds new horizons for drug delivery across biological barriers’, BioEssays, vol. 33, no. 10, pp. 737–741, 2011, doi: 10.1002/bies.201100076.
  • M. Hassanpour, J. Rezaie, M. Nouri, and Y. Panahi, ‘The role of extracellular vesicles in COVID-19 virus infection’, Infect. Genet. Evol., vol. 85, p. 104422, 2020, doi: 10.1016/j.meegid.2020.104422.
  • L. Gattinoni, S. Coppola, M. Cressoni, M. Busana, S. Rossi, and D. Chiumello, ‘COVID-19 does not lead to a “typical” acute respiratory distress syndrome’, Am. J. Respir. Crit. Care Med., vol. 201, no. 10, pp. 1299–1300, 2020, doi: 10.1164/rccm.202003-0817LE.
  • V. Bhavana, P. Thakor, S. B. Singh, and N. K. Mehra, ‘COVID-19: Pathophysiology, treatment options, nanotechnology approaches, and research agenda to combating the SARS-CoV2 pandemic’, Life Sci., vol. 261, no. August, p. 118336, 2020, doi: 10.1016/j.lfs.2020.118336.
  • K. Murugan et al., ‘Magnetic nanoparticles are highly toxic to chloroquine-resistant Plasmodium falciparum, dengue virus (DEN-2), and their mosquito vectors’, Parasitol. Res., vol. 116, no. 2, pp. 495–502, 2017, doi: 10.1007/s00436-016-5310-0.
  • S. S. Jeremiah, K. Miyakawa, T. Morita, Y. Yamaoka, and A. Ryo, ‘Potent antiviral effect of silver nanoparticles on SARS-CoV-2’, Biochem. Biophys. Res. Commun., vol. 533, no. 1, pp. 195–200, 2020, doi: 10.1016/j.bbrc.2020.09.018.
  • G. Behbudi, ‘Effect of silver nanoparticles disinfectant on covid-19’, Adv. Appl. Nano-Bio Technol., vol. 2, no. 2, pp. 63–67, 2021.
  • L. M. Marques Neto, A. Kipnis, and A. P. Junqueira-Kipnis, ‘Role of metallic nanoparticles in vaccinology: Implications for infectious disease vaccine development’, Front. Immunol., vol. 8, no. MAR, 2017, doi: 10.3389/fimmu.2017.00239.
  • R. Itani, M. Tobaiqy, and A. Al Faraj, ‘Optimizing use of theranostic nanoparticles as a life-saving strategy for treating COVID-19 patients’, Theranostics, vol. 10, no. 13, pp. 5932–5942, 2020, doi: 10.7150/thno.46691.
  • L. S. Arias, J. P. Pessan, A. P. M. Vieira, T. M. T. De Lima, A. C. B. Delbem, and D. R. Monteiro, ‘Iron oxide nanoparticles for biomedical applications: A perspective on synthesis, drugs, antimicrobial activity, and toxicity’, Antibiotics, vol. 7, no. 2, 2018, doi: 10.3390/antibiotics7020046.
  • Y. Abo-zeid and G. R. Williams, ‘The potential anti-infective applications of metal oxide nanoparticles: A systematic review’, Wiley Interdiscip. Rev. Nanomedicine Nanobiotechnology, vol. 12, no. 2, pp. 1–36, 2020, doi: 10.1002/wnan.1592.
  • A. Raghunath and E. Perumal, ‘Metal oxide nanoparticles as antimicrobial agents: a promise for the future’, Int. J. Antimicrob. Agents, vol. 49, no. 2, pp. 137–152, 2017, doi: 10.1016/j.ijantimicag.2016.11.011.
  • R. Kumar et al., ‘Iron oxide nanoparticles based antiviral activity of H1N1 influenza A virus’, J. Infect. Chemother., vol. 25, no. 5, pp. 325–329, 2019, doi: 10.1016/j.jiac.2018.12.006.
  • L. Gutierrez et al., ‘Adsorption of rotavirus and bacteriophage MS2 using glass fiber coated with hematite nanoparticles’, Water Res., vol. 43, no. 20, pp. 5198–5208, 2009, doi: 10.1016/j.watres.2009.08.031.
  • D. W. Coyne, ‘Ferumoxytol for treatment of iron deficiency anemia in patients with chronic kidney disease’, Expert Opin. Pharmacother., vol. 10, no. 15, pp. 2563–2568, 2009, doi: 10.1517/14656560903224998.
  • A. Sirelkhatim et al., ‘Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism’, Nano-Micro Lett., vol. 7, no. 3, pp. 219–242, 2015, doi: 10.1007/s40820-015-0040-x.
  • G. Ibrahim Fouad, ‘A proposed insight into the anti-viral potential of metallic nanoparticles against novel coronavirus disease-19 (COVID-19)’, Bull. Natl. Res. Cent., vol. 45, no. 1, 2021, doi: 10.1186/s42269-021-00487-0.
  • H. Ghaffari et al., ‘Inhibition of H1N1 influenza virus infection by zinc oxide nanoparticles: Another emerging application of nanomedicine’, J. Biomed. Sci., vol. 26, no. 1, pp. 1–10, 2019, doi: 10.1186/s12929-019-0563-4.
  • T. Yadavalli and D. Shukla, ‘Role of metal and metal oxide nanoparticles as diagnostic and therapeutic tools for highly prevalent viral infections’, Nanomedicine Nanotechnology, Biol. Med., vol. 13, no. 1, pp. 219–230, 2017, doi: 10.1016/j.nano.2016.08.016.
  • W. T. Al-Jamal and K. Kostarelos, ‘Liposome-nanoparticle hybrids for multimodal diagnostic and therapeutic applications’, Nanomedicine, vol. 2, no. 1, pp. 85–98, 2007, doi: 10.2217/17435889.2.1.85.
  • S. Rafiei, S. E. Rezatofighi, M. R. Ardakani, and S. Rastegarzadeh, ‘Gold Nanoparticles Impair Foot-and-Mouth Disease Virus Replication’, IEEE Trans. Nanobioscience, vol. 15, no. 1, pp. 34–40, 2016, doi: 10.1109/TNB.2015.2508718.
  • V. Lysenko et al., ‘Nanoparticles as antiviral agents against adenoviruses’, Adv. Nat. Sci. Nanosci. Nanotechnol., vol. 9, no. 2, 2018, doi: 10.1088/2043-6254/aac42a.
  • J. L. Elechiguerra et al., ‘Interaction of silver nanoparticles with HIV-1’, J. Nanobiotechnology, vol. 3, pp. 1–10, 2005, doi: 10.1186/1477-3155-3-6.
  • A. Łoczechin et al., ‘Functional Carbon Quantum Dots as Medical Countermeasures to Human Coronavirus’, ACS Appl. Mater. Interfaces, vol. 11, no. 46, pp. 42964–42974, 2019, doi: 10.1021/acsami.9b15032.
  • D. Ting et al., ‘Multisite inhibitors for enteric coronavirus: antiviral cationic carbon dots based on curcumin’, ACS Appl. Nano Mater., vol. 1, no. 10, pp. 5451–5459, 2018, doi: 10.1021/acsanm.8b00779.
  • M. Nasrollahzadeh, M. Sajjadi, G. J. Soufi, S. Iravani, and R. S. Varma, ‘Nanomaterials and nanotechnology-associated innovations against viral infections with a focus on coronaviruses’, Nanomaterials, vol. 10, no. 6, 2020, doi: 10.3390/nano10061072.
  • P. Garg, S. Sangam, D. Kochhar, S. Pahari, C. Kar, and M. Mukherjee, ‘Exploring the role of triazole functionalized heteroatom co-doped carbon quantum dots against human coronaviruses’, Nano Today, vol. 35, p. 101001, 2020, doi: 10.1016/j.nantod.2020.101001.
  • E. Ruiz-Hitzky et al., ‘Nanotechnology Responses to COVID-19’, Adv. Healthc. Mater., vol. 9, no. 19, pp. 1–26, 2020, doi: 10.1002/adhm.202000979.
  • C. Fitzmaurice et al., ‘The Global Burden of Cancer 2013’, JAMA Oncol., vol. 1, no. 4, pp. 505–527, 2015, doi: 10.1001/jamaoncol.2015.0735.
  • S. A. Forbes et al., ‘COSMIC: Mining complete cancer genomes in the catalogue of somatic mutations in cancer’, Nucleic Acids Res., vol. 39, no. SUPPL. 1, pp. 945–950, 2011, doi: 10.1093/nar/gkq929.
  • J. R. Heath and M. E. Davis, ‘Nanotechnology and cancer’, Annu. Rev. Med., vol. 59, pp. 251–265, 2008, doi: 10.1146/annurev.med.59.061506.185523.
  • N. A. Ochekpe, P. O. Olorunfemi, and N. C. Ngwuluka, ‘Nanotechnology and drug delivery. Part 1: background and applications’, Trop. J. Pharm. Res., vol. 8, no. 3, pp. 265–274, 2009.
  • C. Guo, M. H. Manjili, J. R. Subjeck, D. Sarkar, P. B. Fisher, and X. Y. Wang, Therapeutic cancer vaccines. Past, present, and future, 1st ed., vol. 119. Elsevier Inc., 2013. doi: 10.1016/B978-0-12-407190-2.00007-1.
  • E. Hong and M. A. Dobrovolskaia, ‘Addressing barriers to effective cancer immunotherapy with nanotechnology: achievements, challenges, and roadmap to the next generation of nanoimmunotherapeutics’, Adv. Drug Deliv. Rev., vol. 141, pp. 3–22, 2019, doi: 10.1016/j.addr.2018.01.005.
  • X. Wang, L. Yang, Z. Chen, and D. M. Shin, ‘Application of Nanotechnology in Cancer Therapy and Imaging’, CA. Cancer J. Clin., vol. 58, no. 2, pp. 97–110, 2008, doi: 10.3322/ca.2007.0003.
  • R. R. Weichselbaum, H. Liang, L. Deng, and Y. X. Fu, ‘Radiotherapy and immunotherapy: A beneficial liaison?’, Nat. Rev. Clin. Oncol., vol. 14, no. 6, pp. 365–379, 2017, doi: 10.1038/nrclinonc.2016.211.
  • R. A. Kinhikar, A. B. Pawar, U. Mahantshetty, V. Murthy, D. D. Dheshpande, and S. K. Shrivastava, ‘Rapid Arc, helical tomotherapy, sliding window intensity modulated radiotherapy and three dimensional conformal radiation for localized prostate cancer: A dosimetric comparison’, J. Cancer Res. Ther., vol. 10, no. 3, pp. 575–582, 2014, doi: 10.4103/0973-1482.138200.
  • R. Siegel, D. Naishadham, and A. Jemal, ‘Cancer statistics for Hispanics/Latinos, 2012’, CA. Cancer J. Clin., vol. 62, no. 5, pp. 283–298, 2012, doi: 10.3322/caac.21153.
  • Y. Chen, S. Wang, J. Gong, and J. Wang, ‘Biomorphic triangulations: constructing an additional formation pathway to achieve hierarchical self-evolution in biomorphs’, Mater. Chem. Front., vol. 5, no. 1, pp. 472–481, 2021, doi: 10.1039/D0QM00723D.
  • M. Mian et al., ‘Bortezomib, thalidomide and lenalidomide: Have they really changed the outcome of multiple myeloma?’, Anticancer Res., vol. 36, no. 3, pp. 1059–1066, 2016.
  • L. Wayteck, K. Breckpot, J. Demeester, S. C. De Smedt, and K. Raemdonck, ‘A personalized view on cancer immunotherapy’, Cancer Lett., vol. 352, no. 1, pp. 113–125, 2014, doi: 10.1016/j.canlet.2013.09.016.
  • R. J. A. Trent and I. E. Alexander, ‘Gene therapy: Applications and progress towards the clinic’, Intern. Med. J., vol. 34, no. 11, pp. 621–625, 2004, doi: 10.1111/j.1445-5994.2004.00708.x.
  • H. Mellert and J. M. Espinosa, ‘Tumor Suppression by p53: Is Apoptosis Important or Not?’, Cell Rep., vol. 3, no. 5, pp. 1335–1336, 2013, doi: 10.1016/j.celrep.2013.05.011.
  • J. S. Fridman and S. W. Lowe, ‘Control of apoptosis by p53’, Oncogene, vol. 22, no. 56 REV. ISS. 8, pp. 9030–9040, 2003, doi: 10.1038/sj.onc.1207116.
  • X. Wang, Y. Wang, Z. G. Chen, and D. M. Shin, ‘Advances of Cancer Therapy by Nanotechnology’, Cancer Res. Treat., vol. 41, no. 1, p. 1, 2009, doi: 10.4143/crt.2009.41.1.1.
  • A. A. Gümüsay, ‘Unpacking entrepreneurial opportunities: an institutional logics perspective’, ınnovation, vol. 20, no. 3, pp. 209–222, Jul. 2018, doi: 10.1080/14479338.2017.1404430.
  • Z. Kuncic, ‘Cancer nanomedicine: Challenges and opportunities’, Med. J. Aust., vol. 203, no. 5, pp. 204-205.e1, 2015, doi: 10.5694/mja15.00681.
  • M. Ferrari, ‘Cancer nanotechnology: opportunities and challenges’, Nat. Rev. Cancer, vol. 5, no. 3, pp. 161–171, Mar. 2005, doi: 10.1038/nrc1566.
  • V. Biju, S. Mundayoor, R. V. Omkumar, A. Anas, and M. Ishikawa, ‘Bioconjugated quantum dots for cancer research: Present status, prospects and remaining issues’, Biotechnol. Adv., vol. 28, no. 2, pp. 199–213, 2010, doi: 10.1016/j.biotechadv.2009.11.007.
  • Ö. Oylar and İ. Tekin, ‘Nanotechnology in cancer diagnosis and treatment’, Cilt, vol. 16, pp. 147–154, 2011.
  • J. B. Wolinsky and M. W. Grinstaff, ‘Therapeutic and diagnostic applications of dendrimers for cancer treatment’, Adv. Drug Deliv. Rev., vol. 60, no. 9, pp. 1037–1055, 2008, doi: 10.1016/j.addr.2008.02.012.
  • J. A. Fessler, J. M. Ollinger, and A. Arbor, ‘Sıgnal processıng pıtfalls ın posıtron emıssıon tomography Department of Electrical Engineering and Computer Science The University of Michigan Signal Processing Pitfalls in Positron Emission Tomography’, Signal Processing, no. 302, 1996.
  • G. N. E. D. İ. R, ‘Review Magnetic Resonance Imaging and Anesthesia Manyetİ K Rezonans Ve Dİğ Er’, vol. 19, no. 2, pp. 98–103, 2006.
  • K. V. N. Kavitha, A. Shanmugam, and A. L. Imoize, ‘Optimized deep knowledge-based no-reference image quality index for denoised MRI images’, Sci. African, vol. 20, no. July, pp. 1–22, 2023, doi: 10.1016/j.sciaf.2023.e01680.
  • M. Mazonakis and J. Damilakis, ‘Computed tomography: What and how does it measure?’, Eur. J. Radiol., vol. 85, no. 8, pp. 1499–1504, 2016, doi: 10.1016/j.ejrad.2016.03.002.
  • F. F. Alqahtani, ‘SPECT/CT and PET/CT, related radiopharmaceuticals, and areas of application and comparison’, Saudi Pharm. J., vol. 31, no. 2, pp. 312–328, 2023, doi: 10.1016/j.jsps.2022.12.013.
  • M. E. Raichle, ‘Positron Emission’, Annu. Rev. Neurosci., vol. 6, no. 67, pp. 249–267, 1983.
  • Y. Vardi, L. A. Shepp, and L. Kaufman, ‘A statistical model for positron emission tomography’, J. Am. Stat. Assoc., vol. 80, no. 389, pp. 8–20, 1985, doi: 10.1080/01621459.1985.10477119.
  • P. M. Cogswell and A. P. Fan, ‘Multimodal comparisons of QSM and PET in neurodegeneration and aging’, Neuroimage, vol. 273, no. June, pp. 1–24, 2023, doi: 10.1016/j.neuroimage.2023.120068.
  • W. L. Monsky, D. S. Vien, and D. P. Link, ‘Nanotechnology development and utilization: A primer for diagnostic and interventional radiologists’, Radiographics, vol. 31, no. 5, pp. 1449–1462, 2011, doi: 10.1148/rg.315105238.
  • H. Bin Na, I. C. Song, and T. Hyeon, ‘Inorganic Nanoparticles for MRI Contrast Agents’, vol. 21, no. 21, pp. 1–12, 2023.
  • G. Obaid, M. Broekgaarden, A. Bulin, H. Huang, J. Kuriakose, and T. Hasan, ‘Nanoscale’, no. 25, pp. 1–5, 2023.
  • E. M. Shapiro, S. Skrtic, K. Sharer, J. M. Hill, C. E. Dunbar, and A. P. Koretsky, ‘MRI detection of single particles for cellular imaging’, Proc. Natl. Acad. Sci. U. S. A., vol. 101, no. 30, pp. 10901–10906, 2004, doi: 10.1073/pnas.0403918101.
  • A. K. Mishra, ‘Application of Nanotechnology in Diagnosis, Drug Dissolution, Drug Discovery, and Drug Carrier’, Nanotechnol. Life Sci., pp. 449–475, 2019, doi: 10.1007/978-3-030-17061-5_19.
  • J. F. Hainfeld, D. N. Slatkin, T. M. Focella, and H. M. Smilowitz, ‘Gold nanoparticles: A new X-ray contrast agent’, Br. J. Radiol., vol. 79, no. 939, pp. 248–253, 2006, doi: 10.1259/bjr/13169882.
  • D. Kim, S. Park, H. L. Jae, Y. J. Yong, and S. Jon, ‘Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging’, J. Am. Chem. Soc., vol. 129, no. 24, pp. 7661–7665, 2007, doi: 10.1021/ja071471p.
  • B. A. Konkle, M. Recht, A. Hilger, and P. Marks, ‘The critical need for postmarketing surveillance in gene therapy for haemophilia’, Haemophilia, vol. 27, no. S3, pp. 126–131, Feb. 2021, doi: 10.1111/HAE.13972.
  • S. A. Rosenberg et al., ‘Gene Transfer into Humans — Immunotherapy of Patients with Advanced Melanoma, Using Tumor-Infiltrating Lymphocytes Modified by Retroviral Gene Transduction’, N. Engl. J. Med., vol. 323, no. 9, pp. 570–578, Aug. 1990, doi: 10.1056/NEJM199008303230904.
  • S. L. Ginn, A. K. Amaya, I. E. Alexander, M. Edelstein, and M. R. Abedi, ‘Gene therapy clinical trials worldwide to 2017: An update’, J. Gene Med., vol. 20, no. 5, p. e3015, May 2018, doi: 10.1002/JGM.3015.
  • E. Papanikolaou and A. Bosio, ‘The Promise and the Hope of Gene Therapy’, Front. Genome Ed., vol. 3, p. 4, Mar. 2021, doi: 10.3389/FGEED.2021.618346/BIBTEX.
  • Neha and S. Parvez, ‘Emerging therapeutics agents and recent advances in drug repurposing for Alzheimer’s disease’, Ageing Res. Rev., vol. 85, p. 101815, Mar. 2023, doi: 10.1016/j.arr.2022.101815.
  • F. Herranz et al., ‘The application of nanoparticles in gene therapy and magnetic resonance imaging’, Microsc. Res. Tech., vol. 74, no. 7, pp. 577–591, Jul. 2011, doi: 10.1002/JEMT.20992.
  • G. Shim, D. Kim, G. T. Park, H. Jin, S. K. Suh, and Y. K. Oh, ‘Therapeutic gene editing: delivery and regulatory perspectives’, Acta Pharmacol. Sin. 2017 386, vol. 38, no. 6, pp. 738–753, Apr. 2017, doi: 10.1038/aps.2017.2.
  • K. Wu, D. Su, J. Liu, R. Saha, and J. P. Wang, ‘Magnetic nanoparticles in nanomedicine: a review of recent advances’, Nanotechnology, vol. 30, no. 50, p. 502003, Sep. 2019, doi: 10.1088/1361-6528/AB4241.
  • A. Babu, A. K. Templeton, A. Munshi, and R. Ramesh, ‘Nanodrug Delivery Systems: A Promising Technology for Detection, Diagnosis, and Treatment of Cancer’, AAPS PharmSciTech 2014 153, vol. 15, no. 3, pp. 709–721, Feb. 2014, doi: 10.1208/S12249-014-0089-8. C. H. Evans and J. Huard, ‘Gene therapy approaches to regenerating the musculoskeletal system’, Nat. Rev. Rheumatol. 2015 114, vol. 11, no. 4, pp. 234–242, Mar. 2015, doi: 10.1038/nrrheum.2015.28. Y. Vasseghian et al., ‘Spotlighting graphene-based catalysts for the mitigation of environmentally hazardous pollutants to cleaner production: A review’, J. Clean. Prod., vol. 365, p. 132702, Sep. 2022, doi: 10.1016/j.jclepro.2022.132702. S. Nour, B. Bolandi, and R. Imani, ‘Nanotechnology in gene therapy for musculoskeletal regeneration’, Nanoeng. Musculoskelet. Regen., pp. 105–136, Jan. 2020, doi: 10.1016/B978-0-12-820262-3.00004-9.
Year 2023, Issue: 005, 1 - 32, 31.12.2023

Abstract

References

  • G. L. Hornyak, H. F. Tibbals, J. Dutta, and J. J. Moore, Introduction to Nanoscience and Nanotechnology. CRC Press, 2008. doi: 10.1201/9781420047806.
  • J. Silvestre, N. Silvestre, and J. de Brito, ‘Review on concrete nanotechnology’, Eur. J. Environ. Civ. Eng., vol. 20, no. 4, pp. 455–485, Apr. 2016, doi: 10.1080/19648189.2015.1042070.
  • F. Sen, ‘Nanomaterials for direct alcohol fuel cells : characterization, design, and electrocatalysis’, 2021.
  • K. Arikan, H. Burhan, R. Bayat, and F. Sen, ‘Glucose nano biosensor with non-enzymatic excellent sensitivity prepared with nickel–cobalt nanocomposites on f-MWCNT’, Chemosphere, vol. 291, p. 132720, Mar. 2022, doi: 10.1016/J.CHEMOSPHERE.2021.132720.
  • K. Ni et al., ‘Palladium based bimetallic nanocatalysts: Synthesis, characterization and hydrogen fuel production’, Fuel, vol. 341, p. 127577, Jun. 2023, doi: 10.1016/j.fuel.2023.127577.
  • B. Sen, A. Şavk, and F. Sen, ‘Highly efficient monodisperse Pt nanoparticles confined in the carbon black hybrid material for hydrogen liberation’, J. Colloid Interface Sci., vol. 520, pp. 112–118, Jun. 2018, doi: 10.1016/j.jcis.2018.03.004.
  • F. Gulbagca, S. Ozdemir, M. Gulcan, and F. Sen, ‘Synthesis and characterization of Rosa canina-mediated biogenic silver nanoparticles for anti-oxidant, antibacterial, antifungal, and DNA cleavage activities’, Heliyon, vol. 5, no. 12, p. e02980, 2019.
  • R. Nagraik, A. Sharma, D. Kumar, S. Mukherjee, F. Sen, and A. P. Kumar, ‘Amalgamation of biosensors and nanotechnology in disease diagnosis: Mini-review’, Sensors Int., vol. 2, p. 100089, Jan. 2021, doi: 10.1016/J.SINTL.2021.100089.
  • H. Goksu, Y. Y\ild\iz, B. Çelik, M. Yazici, B. Kilbas, and F. Sen, ‘Eco-friendly hydrogenation of aromatic aldehyde compounds by tandem dehydrogenation of dimethylamine-borane in the presence of a reduced graphene oxide furnished platinum nanocatalyst’, Catal. Sci. \& Technol., vol. 6, no. 7, pp. 2318–2324, 2016.
  • J. T. Abrahamson et al., ‘Excess Thermopower and the Theory of Thermopower Waves’, ACS Nano, vol. 7, no. 8, pp. 6533–6544, Aug. 2013, doi: 10.1021/nn402411k.
  • F. Şen and G. Gökaǧaç, ‘Improving Catalytic Efficiency in the Methanol Oxidation Reaction by Inserting Ru in Face-Centered Cubic Pt Nanoparticles Prepared by a New Surfactant, tert-Octanethiol’, Energy and Fuels, vol. 22, no. 3, pp. 1858–1864, May 2008, doi: 10.1021/EF700575T.
  • M. H. Calimli, M. S. Nas, H. Burhan, S. D. Mustafov, Ö. Demirbas, and F. Sen, ‘Preparation, characterization and adsorption kinetics of methylene blue dye in reduced-graphene oxide supported nanoadsorbents’, J. Mol. Liq., vol. 309, p. 113171, 2020.
  • E. Erken, Y. Yıldız, B. Kilbaş, and F. Şen, ‘Synthesis and Characterization of Nearly Monodisperse Pt Nanoparticles for C 1 to C 3 Alcohol Oxidation and Dehydrogenation of Dimethylamine-borane (DMAB)’, J. Nanosci. Nanotechnol., vol. 16, no. 6, pp. 5944–5950, Jun. 2016, doi: 10.1166/jnn.2016.11683.
  • B. Sen, S. Kuzu, E. Demir, E. Y\ild\ir\ir, and F. Sen, ‘Highly efficient catalytic dehydrogenation of dimethyl ammonia borane via monodisperse palladium--nickel alloy nanoparticles assembled on PEDOT’, Int. J. Hydrogen Energy, vol. 42, no. 36, pp. 23307–23314, 2017.
  • B. Şen, A. Aygün, T. O. Okyay, A. Şavk, R. Kartop, and F. Şen, ‘Monodisperse palladium nanoparticles assembled on graphene oxide with the high catalytic activity and reusability in the dehydrogenation of dimethylamine-borane’, Int. J. Hydrogen Energy, vol. 43, no. 44, pp. 20176–20182, Nov. 2018, doi: 10.1016/j.ijhydene.2018.03.175.
  • N. Korkmaz et al., ‘Biogenic silver nanoparticles synthesized via Mimusops elengi fruit extract, a study on antibiofilm, antibacterial, and anticancer activities’, J. Drug Deliv. Sci. Technol., vol. 59, p. 101864, Oct. 2020, doi: 10.1016/j.jddst.2020.101864.
  • S. Günbatar, A. Aygun, Y. Karataş, M. Gülcan, and F. Şen, ‘Carbon-nanotube-based rhodium nanoparticles as highly-active catalyst for hydrolytic dehydrogenation of dimethylamineborane at room temperature’, J. Colloid Interface Sci., vol. 530, pp. 321–327, Nov. 2018, doi: 10.1016/j.jcis.2018.06.100.
  • Ş. Tokalıoğlu, E. Yavuz, S. Demir, and Ş. Patat, ‘Zirconium-based highly porous metal-organic framework (MOF-545) as an efficient adsorbent for vortex assisted-solid phase extraction of lead from cereal, beverage and water samples’, Food Chem., 2017, doi: 10.1016/j.foodchem.2017.06.005.
  • R. Ayranci, G. Başkaya, M. Güzel, S. Bozkurt, F. Şen, and M. Ak, ‘Carbon Based Nanomaterials for High Performance Optoelectrochemical Systems’, ChemistrySelect, vol. 2, no. 4, pp. 1548–1555, Feb. 2017, doi: 10.1002/SLCT.201601632.
  • F. Şen, G. Gökağaç, and S. Şen, ‘High performance Pt nanoparticles prepared by new surfactants for C1 to C3 alcohol oxidation reactions’, J. Nanoparticle Res., vol. 15, no. 10, p. 1979, Oct. 2013, doi: 10.1007/s11051-013-1979-5.
  • F. Şen and G. Gökağaç, ‘Pt nanoparticles synthesized with new surfactants: improvement in C1–C3 alcohol oxidation catalytic activity’, J. Appl. Electrochem., vol. 44, no. 1, pp. 199–207, Jan. 2014, doi: 10.1007/s10800-013-0631-5.
  • F. Sen, A. A. Boghossian, S. Sen, Z. W. Ulissi, J. Zhang, and M. S. Strano, ‘Observation of oscillatory surface reactions of riboflavin, trolox, and singlet oxygen using single carbon nanotube fluorescence spectroscopy’, ACS Nano, vol. 6, no. 12, pp. 10632–10645, 2012.
  • M. B. Askari, P. Salarizadeh, A. Di Bartolomeo, and F. Şen, ‘Enhanced electrochemical performance of MnNi2O4/rGO nanocomposite as pseudocapacitor electrode material and methanol electro-oxidation catalyst’, Nanotechnology, vol. 32, no. 32, 2021, doi: 10.1088/1361-6528/abfded.
  • F. A. Unal, S. Ok, M. Unal, S. Topal, K. Cellat, and F. \cSen, ‘Synthesis, characterization, and application of transition metals (Ni, Zr, and Fe) doped TiO2 photoelectrodes for dye-sensitized solar cells’, J. Mol. Liq., vol. 299, p. 112177, 2020.
  • A. Şavk, H. Aydın, K. Cellat, and F. Şen, ‘A novel high performance non-enzymatic electrochemical glucose biosensor based on activated carbon-supported Pt-Ni nanocomposite’, J. Mol. Liq., vol. 300, p. 112355, Feb. 2020, doi: 10.1016/j.molliq.2019.112355.
  • S. Ertan, F. Şen, S. Şen, and G. Gökağaç, ‘Platinum nanocatalysts prepared with different surfactants for C1-C3 alcohol oxidations and their surface morphologies by AFM’, J. Nanoparticle Res., vol. 14, no. 6, pp. 1–12, Jun. 2012, doi: 10.1007/S11051-012-0922-5/FIGURES/8.
  • B. Demirkan et al., ‘Palladium supported on polypyrrole/reduced graphene oxide nanoparticles for simultaneous biosensing application of ascorbic acid, dopamine, and uric acid’, Sci. Rep., vol. 10, no. 1, p. 2946, Feb. 2020, doi: 10.1038/s41598-020-59935-y.
  • P. Taslimi et al., ‘Pyrazole[3,4-d]pyridazine derivatives: Molecular docking and explore of acetylcholinesterase and carbonic anhydrase enzymes inhibitors as anticholinergics potentials’, Bioorg. Chem., vol. 92, p. 103213, Nov. 2019, doi: 10.1016/j.bioorg.2019.103213.
  • G. A. Silva, ‘Introduction to nanotechnology and its applications to medicine’, Surg. Neurol., vol. 61, no. 3, pp. 216–220, Mar. 2004, doi: 10.1016/J.SURNEU.2003.09.036.
  • S. E. McNeil, ‘Nanotechnology for the biologist’, J. Leukoc. Biol., vol. 78, no. 3, pp. 585–594, May 2005, doi: 10.1189/jlb.0205074.
  • B. Sen, E. Kuyuldar, B. Demirkan, T. O. Okyay, A. \cSavk, and F. Sen, ‘Highly efficient polymer supported monodisperse ruthenium-nickel nanocomposites for dehydrocoupling of dimethylamine borane’, J. Colloid Interface Sci., vol. 526, pp. 480–486, 2018.
  • E. Serrano, G. Rus, and J. García-Martínez, ‘Nanotechnology for sustainable energy’, Renew. Sustain. Energy Rev., vol. 13, no. 9, pp. 2373–2384, Dec. 2009, doi: 10.1016/j.rser.2009.06.003.
  • F. Sanchez and K. Sobolev, ‘Nanotechnology in concrete – A review’, Constr. Build. Mater., vol. 24, no. 11, pp. 2060–2071, Nov. 2010, doi: 10.1016/j.conbuildmat.2010.03.014.
  • R. Misra, S. Acharya, and S. K. Sahoo, ‘Cancer nanotechnology: application of nanotechnology in cancer therapy’, Drug Discov. Today, vol. 15, no. 19–20, pp. 842–850, Oct. 2010, doi: 10.1016/J.DRUDIS.2010.08.006.
  • S. Singhal, S. Nie, and M. D. Wang, ‘Nanotechnology Applications in Surgical Oncology’, Annu. Rev. Med., vol. 61, no. 1, pp. 359–373, Feb. 2010, doi: 10.1146/annurev.med.60.052907.094936.
  • N. Barkalina, C. Charalambous, C. Jones, and K. Coward, ‘Nanotechnology in reproductive medicine: Emerging applications of nanomaterials’, Nanomedicine Nanotechnology, Biol. Med., vol. 10, no. 5, pp. e921–e938, Jul. 2014, doi: 10.1016/j.nano.2014.01.001.
  • D. M. Smith, J. K. Simon, and J. R. Baker Jr, ‘Applications of nanotechnology for immunology’, Nat. Rev. Immunol., vol. 13, no. 8, pp. 592–605, Aug. 2013, doi: 10.1038/nri3488.
  • S. Nie, Y. Xing, G. J. Kim, and J. W. Simons, ‘Nanotechnology Applications in Cancer’, Annu. Rev. Biomed. Eng., vol. 9, no. 1, pp. 257–288, Aug. 2007, doi: 10.1146/annurev.bioeng.9.060906.152025.
  • L. Zhang and T. J. Webster, ‘Nanotechnology and nanomaterials: Promises for improved tissue regeneration’, Nano Today, vol. 4, no. 1, pp. 66–80, Feb. 2009, doi: 10.1016/j.nantod.2008.10.014.
  • J. Hulla, S. Sahu, and A. Hayes, ‘Nanotechnology: History and future’, Hum. Exp. Toxicol., vol. 34, no. 12, pp. 1318–1321, Dec. 2015, doi: 10.1177/0960327115603588.
  • D. E. Prober, ‘Astronomers look to nanotechnology’, Nat. Nanotechnol., vol. 3, no. 8, pp. 459–460, Aug. 2008, doi: 10.1038/nnano.2008.221.
  • J. K. Patel, A. Patel, and D. Bhatia, ‘Introduction to Nanomaterials and Nanotechnology’, in Emerging Technologies for Nanoparticle Manufacturing, Cham: Springer International Publishing, 2021, pp. 3–23. doi: 10.1007/978-3-030-50703-9_1.
  • M. S B, D. P. Birader, and Y. R. Aladakatti, ‘Nanotechnology and its applications in agriculture’, J. Farm Sci., vol. 30, no. 3, pp. 338–342, 2017, doi: 10.1201/9781315365954.
  • B. S. Sekhon, ‘Food nanotechnology – an overview’, Nanotechnol. Sci. Appl., vol. 3, no. 1, p. 1, 2010, Accessed: Sep. 20, 2021. [Online]. Available: /pmc/articles/PMC3781769/
  • J. K. Vasir and V. Labhasetwar, ‘Targeted drug delivery in cancer therapy’, Technol. Cancer Res. Treat., vol. 4, no. 4, pp. 363–374, 2005, doi: 10.1177/153303460500400405.
  • J. Swarbrick and J. C. Boylan, ‘Encyclopedia of pharmaceutical technology’, Choice Rev. Online, vol. 40, no. 11, pp. 40-6157-40–6157, 2003, doi: 10.5860/choice.40-6157.
  • K. CANEFE and G. DUMAN, ‘Selective Drug Delivery and Targeting’, Ankara Üniversitesi Eczac. Fakültesi Derg., vol. 23, no. 1, pp. 53–63, 1994.
  • T. J. Wickham, ‘Ligand-directed targeting of genes to the site of disease’, Nat. Med., vol. 9, no. 1, pp. 135–139, 2003, doi: 10.1038/nm0103-135.
  • Z. Tüylek, ‘İlaç Taşıyıcı Sistemler ve Nanoteknolojik Etkileşim Drug Delivery Systems and Nanotechnological Interactionfile’, Bozok Tıp Derg., vol. 7, no. 3, pp. 89–98, 2017.
  • B. Şahin, E. Demir, A. Aygün, H. Gündüz, and F. Şen, ‘Investigation of the effect of pomegranate extract and monodisperse silver nanoparticle combination on MCF-7 cell line’, J. Biotechnol., vol. 260, pp. 79–83, Oct. 2017, doi: 10.1016/J.JBIOTEC.2017.09.012.
  • J. Swarbrick, Tablet Manufacture by Direct Compression. 2019. doi: 10.1201/b19309-20.
  • J. E. Kipp, ‘The role of solid nanoparticle technology in the parenteral delivery of poorly water-soluble drugs’, Int. J. Pharm., vol. 284, no. 1–2, pp. 109–122, 2004, doi: 10.1016/j.ijpharm.2004.07.019.
  • J. Panyam and V. Labhasetwar, ‘Sustained cytoplasmic delivery of drugs with intracellular receptors using biodegradable nanoparticles.’, Mol. Pharm., vol. 1, no. 1, pp. 77–84, 2004, doi: 10.1021/mp034002c.
  • H. Cabral, K. Miyata, K. Osada, and K. Kataoka, ‘Block Copolymer Micelles in Nanomedicine Applications’, Chem. Rev., vol. 118, no. 14, pp. 6844–6892, 2018, doi: 10.1021/acs.chemrev.8b00199.
  • S. Hossen, M. K. Hossain, M. K. Basher, M. N. H. Mia, M. T. Rahman, and M. J. Uddin, ‘Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review’, J. Adv. Res., vol. 15, pp. 1–18, 2019, doi: 10.1016/j.jare.2018.06.005.
  • A. Tewabe, A. Abate, M. Tamrie, A. Seyfu, and E. A. Siraj, ‘Targeted drug delivery — from magic bullet to nanomedicine: Principles, challenges, and future perspectives’, J. Multidiscip. Healthc., vol. 14, pp. 1711–1724, 2021, doi: 10.2147/JMDH.S313968.
  • V. P. Torchilin, ‘Structure and design of polymeric surfactant-based drug delivery systems’, J. Control. Release, vol. 73, no. 2–3, pp. 137–172, 2001, doi: 10.1016/S0168-3659(01)00299-1.
  • Y. Cheng, Z. Xu, M. Ma, and T. Xu, ‘Dendrimers as drug carriers: Applications in different routes of drug administration’, J. Pharm. Sci., vol. 97, no. 1, pp. 123–143, 2008, doi: 10.1002/jps.21079.
  • R. C. Grekin and M. J. Auletta, ‘Local anesthesia in dermatologic surgery’, J. Am. Acad. Dermatol., vol. 19, no. 4, pp. 599–614, Oct. 1988, doi: 10.1016/S0190-9622(88)70213-3.
  • A. B. Mehta, N. J. Nadkarni, S. P. Patil, K. V. Godse, M. Gautam, and S. Agarwal, ‘Topical corticosteroids in dermatology’, Indian J. Dermatol. Venereol. Leprol., vol. 82, no. 4, pp. 371–378, 2016, doi: 10.4103/0378-6323.178903.
  • J. Schmitt, S. Rosumeck, G. Thomaschewski, B. Sporbeck, E. Haufe, and A. Nast, ‘Efficacy and safety of systemic treatments for moderate-to-severe psoriasis: Meta-analysis of randomized controlled trials’, Br. J. Dermatol., vol. 170, no. 2, pp. 274–303, 2014, doi: 10.1111/bjd.12663.
  • J. W. Wong and J. Y. M. Koo, ‘Psychopharmacological therapies in dermatology’, Dermatol. Online J., vol. 19, no. 5, pp. 7–10, 2013, doi: 10.5070/d3195018169.
  • J. Prohaska and A. H. Jan, ‘Kriyoterapi Sürekli Eğitim Etkinliği Belirteçler’, pp. 1–6, 2023.
  • L. A. Delouise, ‘Applications of nanotechnology in dermatology’, J. Invest. Dermatol., vol. 132, no. 3 PART 2, pp. 964–975, 2012, doi: 10.1038/jid.2011.425.
  • A. Nasir, A. Friedman, and S. Wang, ‘Nanotechnology in dermatology’, Nanotechnol. Dermatology, vol. 9781461450, pp. 1–291, 2013, doi: 10.1007/978-1-4614-5034-4.
  • S. Berksoy Hayta, M. Akyol, Ö. Üyesi, C. Üniversitesi Tıp Fakültesi, D. ve Zührevi Hastalıklar Anabilim Dalı, and D. ve Zührevi Hastalıklar Anabilim Dalı Yazışma Adresi, ‘Nanoteknolojinin Dermotoloji Alanında Kullanımı Nanotechnology Use In Dermatology’, pp. 44–55, 2018.
  • E. B. Souto, ‘Patenting nanomedicines: Legal aspects, intellectual property and grant opportunities’, Patenting Nanomedicines Leg. Asp. Intellect. Prop. Grant Oppor., vol. 9783642292, pp. 1–457, 2012, doi: 10.1007/978-3-642-29265-1.
  • J. R. Antonio, C. R. Antônio, I. L. S. Cardeal, J. M. A. Ballavenuto, and J. R. Oliveira, ‘Nanotechnology in dermatology’, An. Bras. Dermatol., vol. 89, no. 1, pp. 126–136, 2014, doi: 10.1590/abd1806-4841.20142228.
  • P. R. Bergstresser and J. Richard Taylor, ‘Epidermal ’turnover time’—a new examination’, Br. J. Dermatol., vol. 96, no. 5, pp. 503–506, May 1977, doi: 10.1111/j.1365-2133.1977.tb07152.x.
  • A. Slominski, D. J. Tobin, S. Shibahara, and J. Wortsman, ‘Melanin pigmentation in mammalian skin and its hormonal regulation’, Physiol. Rev., vol. 84, no. 4, pp. 1155–1228, 2004, doi: 10.1152/physrev.00044.2003.
  • E. Guttman-Yassky et al., ‘Broad defects in epidermal cornification in atopic dermatitis identified through genomic analysis’, J. Allergy Clin. Immunol., vol. 124, no. 6, 2009, doi: 10.1016/j.jaci.2009.09.031.
  • C. Bieber, K. G. Müller, J. Nicolai, M. Hartmann, and W. Eich, ‘How does your doctor talk with you? Preliminary validation of a brief patient self-report questionnaire on the quality of physician-patient interaction’, J. Clin. Psychol. Med. Settings, vol. 17, no. 2, pp. 125–136, 2010, doi: 10.1007/s10880-010-9189-0.
  • M. M. A. Elsayed, O. Y. Abdallah, V. F. Naggar, and N. M. Khalafallah, ‘Lipid vesicles for skin delivery of drugs: Reviewing three decades of research’, Int. J. Pharm., vol. 332, no. 1–2, pp. 1–16, 2007, doi: 10.1016/j.ijpharm.2006.12.005.
  • A. N. Lukashev and A. A. Zamyatnin, ‘Viral vectors for gene therapy: Current state and clinical perspectives’, Biochem., vol. 81, no. 7, pp. 700–708, 2016, doi: 10.1134/S0006297916070063.
  • K. Culver, ‘The ADA human gene therapy clinical protocol.’, Hum. Gene Ther., vol. 1, no. 3, pp. 327–362, 1990, doi: 10.1089/hum.1990.1.3-327.
  • W. Walther and U. Stein, ‘Viral vectors for gene transfer: A review of their use in the treatment of human diseases’, Drugs, vol. 60, no. 2, pp. 249–271, 2000, doi: 10.2165/00003495-200060020-00002.
  • K. Kostarelos, ‘Nanoscale nights of Covıd-19’, Nat. Nanotechnol., vol. 15, no. 5, pp. 343–344, 2020, doi: 10.1038/s41565-020-0687-4.
  • H. Yin, R. L. Kanasty, A. A. Eltoukhy, A. J. Vegas, J. R. Dorkin, and D. G. Anderson, ‘Non-viral vectors for gene-based therapy’, Nat. Rev. Genet., vol. 15, no. 8, pp. 541–555, 2014, doi: 10.1038/nrg3763.
  • M. Vincent, I. De Lázaro, and K. Kostarelos, ‘Graphene materials as 2D non-viral gene transfer vector platforms’, Gene Ther., vol. 24, no. 3, pp. 123–132, 2017, doi: 10.1038/gt.2016.79.
  • Y. S. Malik et al., ‘Emerging novel coronavirus (2019-nCoV)—current scenario, evolutionary perspective based on genome analysis and recent developments’, Vet. Q., vol. 40, no. 1, pp. 68–76, 2020, doi: 10.1080/01652176.2020.1727993.
  • Pinky, S. Gupta, V. Krishnakumar, Y. Sharma, A. K. Dinda, and S. Mohanty, ‘Mesenchymal Stem Cell Derived Exosomes: a Nano Platform for Therapeutics and Drug Delivery in Combating COVID-19’, Stem Cell Rev. Reports, vol. 17, no. 1, pp. 33–43, 2021, doi: 10.1007/s12015-020-10002-z.
  • A. Akbari and J. Rezaie, ‘Potential therapeutic application of mesenchymal stem cell-derived exosomes in SARS-CoV-2 pneumonia’, Stem Cell Res. Ther., vol. 11, no. 1, pp. 1–10, 2020, doi: 10.1186/s13287-020-01866-6.
  • P. Vader, E. A. Mol, G. Pasterkamp, and R. M. Schiffelers, ‘Extracellular vesicles for drug delivery’, Adv. Drug Deliv. Rev., vol. 106, pp. 148–156, 2016, doi: 10.1016/j.addr.2016.02.006.
  • E. J. Bunggulawa et al., ‘Recent advancements in the use of exosomes as drug delivery systems 06 Biological Sciences 0601 Biochemistry and Cell Biology’, J. Nanobiotechnology, vol. 16, no. 1, pp. 1–13, 2018, doi: 10.1186/s12951-018-0403-9.
  • L. Pascucci et al., ‘Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: A new approach for drug delivery’, J. Control. Release, vol. 192, pp. 262–270, 2014, doi: 10.1016/j.jconrel.2014.07.042.
  • S. Lakhal and M. J. A. Wood, ‘Exosome nanotechnology: An emerging paradigm shift in drug delivery: Exploitation of exosome nanovesicles for systemic in vivo delivery of RNAi heralds new horizons for drug delivery across biological barriers’, BioEssays, vol. 33, no. 10, pp. 737–741, 2011, doi: 10.1002/bies.201100076.
  • M. Hassanpour, J. Rezaie, M. Nouri, and Y. Panahi, ‘The role of extracellular vesicles in COVID-19 virus infection’, Infect. Genet. Evol., vol. 85, p. 104422, 2020, doi: 10.1016/j.meegid.2020.104422.
  • L. Gattinoni, S. Coppola, M. Cressoni, M. Busana, S. Rossi, and D. Chiumello, ‘COVID-19 does not lead to a “typical” acute respiratory distress syndrome’, Am. J. Respir. Crit. Care Med., vol. 201, no. 10, pp. 1299–1300, 2020, doi: 10.1164/rccm.202003-0817LE.
  • V. Bhavana, P. Thakor, S. B. Singh, and N. K. Mehra, ‘COVID-19: Pathophysiology, treatment options, nanotechnology approaches, and research agenda to combating the SARS-CoV2 pandemic’, Life Sci., vol. 261, no. August, p. 118336, 2020, doi: 10.1016/j.lfs.2020.118336.
  • K. Murugan et al., ‘Magnetic nanoparticles are highly toxic to chloroquine-resistant Plasmodium falciparum, dengue virus (DEN-2), and their mosquito vectors’, Parasitol. Res., vol. 116, no. 2, pp. 495–502, 2017, doi: 10.1007/s00436-016-5310-0.
  • S. S. Jeremiah, K. Miyakawa, T. Morita, Y. Yamaoka, and A. Ryo, ‘Potent antiviral effect of silver nanoparticles on SARS-CoV-2’, Biochem. Biophys. Res. Commun., vol. 533, no. 1, pp. 195–200, 2020, doi: 10.1016/j.bbrc.2020.09.018.
  • G. Behbudi, ‘Effect of silver nanoparticles disinfectant on covid-19’, Adv. Appl. Nano-Bio Technol., vol. 2, no. 2, pp. 63–67, 2021.
  • L. M. Marques Neto, A. Kipnis, and A. P. Junqueira-Kipnis, ‘Role of metallic nanoparticles in vaccinology: Implications for infectious disease vaccine development’, Front. Immunol., vol. 8, no. MAR, 2017, doi: 10.3389/fimmu.2017.00239.
  • R. Itani, M. Tobaiqy, and A. Al Faraj, ‘Optimizing use of theranostic nanoparticles as a life-saving strategy for treating COVID-19 patients’, Theranostics, vol. 10, no. 13, pp. 5932–5942, 2020, doi: 10.7150/thno.46691.
  • L. S. Arias, J. P. Pessan, A. P. M. Vieira, T. M. T. De Lima, A. C. B. Delbem, and D. R. Monteiro, ‘Iron oxide nanoparticles for biomedical applications: A perspective on synthesis, drugs, antimicrobial activity, and toxicity’, Antibiotics, vol. 7, no. 2, 2018, doi: 10.3390/antibiotics7020046.
  • Y. Abo-zeid and G. R. Williams, ‘The potential anti-infective applications of metal oxide nanoparticles: A systematic review’, Wiley Interdiscip. Rev. Nanomedicine Nanobiotechnology, vol. 12, no. 2, pp. 1–36, 2020, doi: 10.1002/wnan.1592.
  • A. Raghunath and E. Perumal, ‘Metal oxide nanoparticles as antimicrobial agents: a promise for the future’, Int. J. Antimicrob. Agents, vol. 49, no. 2, pp. 137–152, 2017, doi: 10.1016/j.ijantimicag.2016.11.011.
  • R. Kumar et al., ‘Iron oxide nanoparticles based antiviral activity of H1N1 influenza A virus’, J. Infect. Chemother., vol. 25, no. 5, pp. 325–329, 2019, doi: 10.1016/j.jiac.2018.12.006.
  • L. Gutierrez et al., ‘Adsorption of rotavirus and bacteriophage MS2 using glass fiber coated with hematite nanoparticles’, Water Res., vol. 43, no. 20, pp. 5198–5208, 2009, doi: 10.1016/j.watres.2009.08.031.
  • D. W. Coyne, ‘Ferumoxytol for treatment of iron deficiency anemia in patients with chronic kidney disease’, Expert Opin. Pharmacother., vol. 10, no. 15, pp. 2563–2568, 2009, doi: 10.1517/14656560903224998.
  • A. Sirelkhatim et al., ‘Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism’, Nano-Micro Lett., vol. 7, no. 3, pp. 219–242, 2015, doi: 10.1007/s40820-015-0040-x.
  • G. Ibrahim Fouad, ‘A proposed insight into the anti-viral potential of metallic nanoparticles against novel coronavirus disease-19 (COVID-19)’, Bull. Natl. Res. Cent., vol. 45, no. 1, 2021, doi: 10.1186/s42269-021-00487-0.
  • H. Ghaffari et al., ‘Inhibition of H1N1 influenza virus infection by zinc oxide nanoparticles: Another emerging application of nanomedicine’, J. Biomed. Sci., vol. 26, no. 1, pp. 1–10, 2019, doi: 10.1186/s12929-019-0563-4.
  • T. Yadavalli and D. Shukla, ‘Role of metal and metal oxide nanoparticles as diagnostic and therapeutic tools for highly prevalent viral infections’, Nanomedicine Nanotechnology, Biol. Med., vol. 13, no. 1, pp. 219–230, 2017, doi: 10.1016/j.nano.2016.08.016.
  • W. T. Al-Jamal and K. Kostarelos, ‘Liposome-nanoparticle hybrids for multimodal diagnostic and therapeutic applications’, Nanomedicine, vol. 2, no. 1, pp. 85–98, 2007, doi: 10.2217/17435889.2.1.85.
  • S. Rafiei, S. E. Rezatofighi, M. R. Ardakani, and S. Rastegarzadeh, ‘Gold Nanoparticles Impair Foot-and-Mouth Disease Virus Replication’, IEEE Trans. Nanobioscience, vol. 15, no. 1, pp. 34–40, 2016, doi: 10.1109/TNB.2015.2508718.
  • V. Lysenko et al., ‘Nanoparticles as antiviral agents against adenoviruses’, Adv. Nat. Sci. Nanosci. Nanotechnol., vol. 9, no. 2, 2018, doi: 10.1088/2043-6254/aac42a.
  • J. L. Elechiguerra et al., ‘Interaction of silver nanoparticles with HIV-1’, J. Nanobiotechnology, vol. 3, pp. 1–10, 2005, doi: 10.1186/1477-3155-3-6.
  • A. Łoczechin et al., ‘Functional Carbon Quantum Dots as Medical Countermeasures to Human Coronavirus’, ACS Appl. Mater. Interfaces, vol. 11, no. 46, pp. 42964–42974, 2019, doi: 10.1021/acsami.9b15032.
  • D. Ting et al., ‘Multisite inhibitors for enteric coronavirus: antiviral cationic carbon dots based on curcumin’, ACS Appl. Nano Mater., vol. 1, no. 10, pp. 5451–5459, 2018, doi: 10.1021/acsanm.8b00779.
  • M. Nasrollahzadeh, M. Sajjadi, G. J. Soufi, S. Iravani, and R. S. Varma, ‘Nanomaterials and nanotechnology-associated innovations against viral infections with a focus on coronaviruses’, Nanomaterials, vol. 10, no. 6, 2020, doi: 10.3390/nano10061072.
  • P. Garg, S. Sangam, D. Kochhar, S. Pahari, C. Kar, and M. Mukherjee, ‘Exploring the role of triazole functionalized heteroatom co-doped carbon quantum dots against human coronaviruses’, Nano Today, vol. 35, p. 101001, 2020, doi: 10.1016/j.nantod.2020.101001.
  • E. Ruiz-Hitzky et al., ‘Nanotechnology Responses to COVID-19’, Adv. Healthc. Mater., vol. 9, no. 19, pp. 1–26, 2020, doi: 10.1002/adhm.202000979.
  • C. Fitzmaurice et al., ‘The Global Burden of Cancer 2013’, JAMA Oncol., vol. 1, no. 4, pp. 505–527, 2015, doi: 10.1001/jamaoncol.2015.0735.
  • S. A. Forbes et al., ‘COSMIC: Mining complete cancer genomes in the catalogue of somatic mutations in cancer’, Nucleic Acids Res., vol. 39, no. SUPPL. 1, pp. 945–950, 2011, doi: 10.1093/nar/gkq929.
  • J. R. Heath and M. E. Davis, ‘Nanotechnology and cancer’, Annu. Rev. Med., vol. 59, pp. 251–265, 2008, doi: 10.1146/annurev.med.59.061506.185523.
  • N. A. Ochekpe, P. O. Olorunfemi, and N. C. Ngwuluka, ‘Nanotechnology and drug delivery. Part 1: background and applications’, Trop. J. Pharm. Res., vol. 8, no. 3, pp. 265–274, 2009.
  • C. Guo, M. H. Manjili, J. R. Subjeck, D. Sarkar, P. B. Fisher, and X. Y. Wang, Therapeutic cancer vaccines. Past, present, and future, 1st ed., vol. 119. Elsevier Inc., 2013. doi: 10.1016/B978-0-12-407190-2.00007-1.
  • E. Hong and M. A. Dobrovolskaia, ‘Addressing barriers to effective cancer immunotherapy with nanotechnology: achievements, challenges, and roadmap to the next generation of nanoimmunotherapeutics’, Adv. Drug Deliv. Rev., vol. 141, pp. 3–22, 2019, doi: 10.1016/j.addr.2018.01.005.
  • X. Wang, L. Yang, Z. Chen, and D. M. Shin, ‘Application of Nanotechnology in Cancer Therapy and Imaging’, CA. Cancer J. Clin., vol. 58, no. 2, pp. 97–110, 2008, doi: 10.3322/ca.2007.0003.
  • R. R. Weichselbaum, H. Liang, L. Deng, and Y. X. Fu, ‘Radiotherapy and immunotherapy: A beneficial liaison?’, Nat. Rev. Clin. Oncol., vol. 14, no. 6, pp. 365–379, 2017, doi: 10.1038/nrclinonc.2016.211.
  • R. A. Kinhikar, A. B. Pawar, U. Mahantshetty, V. Murthy, D. D. Dheshpande, and S. K. Shrivastava, ‘Rapid Arc, helical tomotherapy, sliding window intensity modulated radiotherapy and three dimensional conformal radiation for localized prostate cancer: A dosimetric comparison’, J. Cancer Res. Ther., vol. 10, no. 3, pp. 575–582, 2014, doi: 10.4103/0973-1482.138200.
  • R. Siegel, D. Naishadham, and A. Jemal, ‘Cancer statistics for Hispanics/Latinos, 2012’, CA. Cancer J. Clin., vol. 62, no. 5, pp. 283–298, 2012, doi: 10.3322/caac.21153.
  • Y. Chen, S. Wang, J. Gong, and J. Wang, ‘Biomorphic triangulations: constructing an additional formation pathway to achieve hierarchical self-evolution in biomorphs’, Mater. Chem. Front., vol. 5, no. 1, pp. 472–481, 2021, doi: 10.1039/D0QM00723D.
  • M. Mian et al., ‘Bortezomib, thalidomide and lenalidomide: Have they really changed the outcome of multiple myeloma?’, Anticancer Res., vol. 36, no. 3, pp. 1059–1066, 2016.
  • L. Wayteck, K. Breckpot, J. Demeester, S. C. De Smedt, and K. Raemdonck, ‘A personalized view on cancer immunotherapy’, Cancer Lett., vol. 352, no. 1, pp. 113–125, 2014, doi: 10.1016/j.canlet.2013.09.016.
  • R. J. A. Trent and I. E. Alexander, ‘Gene therapy: Applications and progress towards the clinic’, Intern. Med. J., vol. 34, no. 11, pp. 621–625, 2004, doi: 10.1111/j.1445-5994.2004.00708.x.
  • H. Mellert and J. M. Espinosa, ‘Tumor Suppression by p53: Is Apoptosis Important or Not?’, Cell Rep., vol. 3, no. 5, pp. 1335–1336, 2013, doi: 10.1016/j.celrep.2013.05.011.
  • J. S. Fridman and S. W. Lowe, ‘Control of apoptosis by p53’, Oncogene, vol. 22, no. 56 REV. ISS. 8, pp. 9030–9040, 2003, doi: 10.1038/sj.onc.1207116.
  • X. Wang, Y. Wang, Z. G. Chen, and D. M. Shin, ‘Advances of Cancer Therapy by Nanotechnology’, Cancer Res. Treat., vol. 41, no. 1, p. 1, 2009, doi: 10.4143/crt.2009.41.1.1.
  • A. A. Gümüsay, ‘Unpacking entrepreneurial opportunities: an institutional logics perspective’, ınnovation, vol. 20, no. 3, pp. 209–222, Jul. 2018, doi: 10.1080/14479338.2017.1404430.
  • Z. Kuncic, ‘Cancer nanomedicine: Challenges and opportunities’, Med. J. Aust., vol. 203, no. 5, pp. 204-205.e1, 2015, doi: 10.5694/mja15.00681.
  • M. Ferrari, ‘Cancer nanotechnology: opportunities and challenges’, Nat. Rev. Cancer, vol. 5, no. 3, pp. 161–171, Mar. 2005, doi: 10.1038/nrc1566.
  • V. Biju, S. Mundayoor, R. V. Omkumar, A. Anas, and M. Ishikawa, ‘Bioconjugated quantum dots for cancer research: Present status, prospects and remaining issues’, Biotechnol. Adv., vol. 28, no. 2, pp. 199–213, 2010, doi: 10.1016/j.biotechadv.2009.11.007.
  • Ö. Oylar and İ. Tekin, ‘Nanotechnology in cancer diagnosis and treatment’, Cilt, vol. 16, pp. 147–154, 2011.
  • J. B. Wolinsky and M. W. Grinstaff, ‘Therapeutic and diagnostic applications of dendrimers for cancer treatment’, Adv. Drug Deliv. Rev., vol. 60, no. 9, pp. 1037–1055, 2008, doi: 10.1016/j.addr.2008.02.012.
  • J. A. Fessler, J. M. Ollinger, and A. Arbor, ‘Sıgnal processıng pıtfalls ın posıtron emıssıon tomography Department of Electrical Engineering and Computer Science The University of Michigan Signal Processing Pitfalls in Positron Emission Tomography’, Signal Processing, no. 302, 1996.
  • G. N. E. D. İ. R, ‘Review Magnetic Resonance Imaging and Anesthesia Manyetİ K Rezonans Ve Dİğ Er’, vol. 19, no. 2, pp. 98–103, 2006.
  • K. V. N. Kavitha, A. Shanmugam, and A. L. Imoize, ‘Optimized deep knowledge-based no-reference image quality index for denoised MRI images’, Sci. African, vol. 20, no. July, pp. 1–22, 2023, doi: 10.1016/j.sciaf.2023.e01680.
  • M. Mazonakis and J. Damilakis, ‘Computed tomography: What and how does it measure?’, Eur. J. Radiol., vol. 85, no. 8, pp. 1499–1504, 2016, doi: 10.1016/j.ejrad.2016.03.002.
  • F. F. Alqahtani, ‘SPECT/CT and PET/CT, related radiopharmaceuticals, and areas of application and comparison’, Saudi Pharm. J., vol. 31, no. 2, pp. 312–328, 2023, doi: 10.1016/j.jsps.2022.12.013.
  • M. E. Raichle, ‘Positron Emission’, Annu. Rev. Neurosci., vol. 6, no. 67, pp. 249–267, 1983.
  • Y. Vardi, L. A. Shepp, and L. Kaufman, ‘A statistical model for positron emission tomography’, J. Am. Stat. Assoc., vol. 80, no. 389, pp. 8–20, 1985, doi: 10.1080/01621459.1985.10477119.
  • P. M. Cogswell and A. P. Fan, ‘Multimodal comparisons of QSM and PET in neurodegeneration and aging’, Neuroimage, vol. 273, no. June, pp. 1–24, 2023, doi: 10.1016/j.neuroimage.2023.120068.
  • W. L. Monsky, D. S. Vien, and D. P. Link, ‘Nanotechnology development and utilization: A primer for diagnostic and interventional radiologists’, Radiographics, vol. 31, no. 5, pp. 1449–1462, 2011, doi: 10.1148/rg.315105238.
  • H. Bin Na, I. C. Song, and T. Hyeon, ‘Inorganic Nanoparticles for MRI Contrast Agents’, vol. 21, no. 21, pp. 1–12, 2023.
  • G. Obaid, M. Broekgaarden, A. Bulin, H. Huang, J. Kuriakose, and T. Hasan, ‘Nanoscale’, no. 25, pp. 1–5, 2023.
  • E. M. Shapiro, S. Skrtic, K. Sharer, J. M. Hill, C. E. Dunbar, and A. P. Koretsky, ‘MRI detection of single particles for cellular imaging’, Proc. Natl. Acad. Sci. U. S. A., vol. 101, no. 30, pp. 10901–10906, 2004, doi: 10.1073/pnas.0403918101.
  • A. K. Mishra, ‘Application of Nanotechnology in Diagnosis, Drug Dissolution, Drug Discovery, and Drug Carrier’, Nanotechnol. Life Sci., pp. 449–475, 2019, doi: 10.1007/978-3-030-17061-5_19.
  • J. F. Hainfeld, D. N. Slatkin, T. M. Focella, and H. M. Smilowitz, ‘Gold nanoparticles: A new X-ray contrast agent’, Br. J. Radiol., vol. 79, no. 939, pp. 248–253, 2006, doi: 10.1259/bjr/13169882.
  • D. Kim, S. Park, H. L. Jae, Y. J. Yong, and S. Jon, ‘Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging’, J. Am. Chem. Soc., vol. 129, no. 24, pp. 7661–7665, 2007, doi: 10.1021/ja071471p.
  • B. A. Konkle, M. Recht, A. Hilger, and P. Marks, ‘The critical need for postmarketing surveillance in gene therapy for haemophilia’, Haemophilia, vol. 27, no. S3, pp. 126–131, Feb. 2021, doi: 10.1111/HAE.13972.
  • S. A. Rosenberg et al., ‘Gene Transfer into Humans — Immunotherapy of Patients with Advanced Melanoma, Using Tumor-Infiltrating Lymphocytes Modified by Retroviral Gene Transduction’, N. Engl. J. Med., vol. 323, no. 9, pp. 570–578, Aug. 1990, doi: 10.1056/NEJM199008303230904.
  • S. L. Ginn, A. K. Amaya, I. E. Alexander, M. Edelstein, and M. R. Abedi, ‘Gene therapy clinical trials worldwide to 2017: An update’, J. Gene Med., vol. 20, no. 5, p. e3015, May 2018, doi: 10.1002/JGM.3015.
  • E. Papanikolaou and A. Bosio, ‘The Promise and the Hope of Gene Therapy’, Front. Genome Ed., vol. 3, p. 4, Mar. 2021, doi: 10.3389/FGEED.2021.618346/BIBTEX.
  • Neha and S. Parvez, ‘Emerging therapeutics agents and recent advances in drug repurposing for Alzheimer’s disease’, Ageing Res. Rev., vol. 85, p. 101815, Mar. 2023, doi: 10.1016/j.arr.2022.101815.
  • F. Herranz et al., ‘The application of nanoparticles in gene therapy and magnetic resonance imaging’, Microsc. Res. Tech., vol. 74, no. 7, pp. 577–591, Jul. 2011, doi: 10.1002/JEMT.20992.
  • G. Shim, D. Kim, G. T. Park, H. Jin, S. K. Suh, and Y. K. Oh, ‘Therapeutic gene editing: delivery and regulatory perspectives’, Acta Pharmacol. Sin. 2017 386, vol. 38, no. 6, pp. 738–753, Apr. 2017, doi: 10.1038/aps.2017.2.
  • K. Wu, D. Su, J. Liu, R. Saha, and J. P. Wang, ‘Magnetic nanoparticles in nanomedicine: a review of recent advances’, Nanotechnology, vol. 30, no. 50, p. 502003, Sep. 2019, doi: 10.1088/1361-6528/AB4241.
  • A. Babu, A. K. Templeton, A. Munshi, and R. Ramesh, ‘Nanodrug Delivery Systems: A Promising Technology for Detection, Diagnosis, and Treatment of Cancer’, AAPS PharmSciTech 2014 153, vol. 15, no. 3, pp. 709–721, Feb. 2014, doi: 10.1208/S12249-014-0089-8. C. H. Evans and J. Huard, ‘Gene therapy approaches to regenerating the musculoskeletal system’, Nat. Rev. Rheumatol. 2015 114, vol. 11, no. 4, pp. 234–242, Mar. 2015, doi: 10.1038/nrrheum.2015.28. Y. Vasseghian et al., ‘Spotlighting graphene-based catalysts for the mitigation of environmentally hazardous pollutants to cleaner production: A review’, J. Clean. Prod., vol. 365, p. 132702, Sep. 2022, doi: 10.1016/j.jclepro.2022.132702. S. Nour, B. Bolandi, and R. Imani, ‘Nanotechnology in gene therapy for musculoskeletal regeneration’, Nanoeng. Musculoskelet. Regen., pp. 105–136, Jan. 2020, doi: 10.1016/B978-0-12-820262-3.00004-9.
There are 160 citations in total.

Details

Primary Language English
Subjects Metabolic Medicine, Nanochemistry, Medical Devices, Nanomaterials
Journal Section Reviews
Authors

Gülcan Yavuz

Emircan Yılmaz

Ebru Halvacı

Cansu Çatal

İrem Türk

Fatma Nur Maran

Manal Enabah

Fatih Şen

Publication Date December 31, 2023
Submission Date June 9, 2023
Published in Issue Year 2023 Issue: 005

Cite

APA Yavuz, G., Yılmaz, E., Halvacı, E., Çatal, C., et al. (2023). Nanotechnology In Medical Applications: Recent Developments In Devices And Materials. Journal of Scientific Reports-C(005), 1-32.
AMA Yavuz G, Yılmaz E, Halvacı E, Çatal C, Türk İ, Maran FN, Enabah M, Şen F. Nanotechnology In Medical Applications: Recent Developments In Devices And Materials. JSR-C. December 2023;(005):1-32.
Chicago Yavuz, Gülcan, Emircan Yılmaz, Ebru Halvacı, Cansu Çatal, İrem Türk, Fatma Nur Maran, Manal Enabah, and Fatih Şen. “Nanotechnology In Medical Applications: Recent Developments In Devices And Materials”. Journal of Scientific Reports-C, no. 005 (December 2023): 1-32.
EndNote Yavuz G, Yılmaz E, Halvacı E, Çatal C, Türk İ, Maran FN, Enabah M, Şen F (December 1, 2023) Nanotechnology In Medical Applications: Recent Developments In Devices And Materials. Journal of Scientific Reports-C 005 1–32.
IEEE G. Yavuz, “Nanotechnology In Medical Applications: Recent Developments In Devices And Materials”, JSR-C, no. 005, pp. 1–32, December 2023.
ISNAD Yavuz, Gülcan et al. “Nanotechnology In Medical Applications: Recent Developments In Devices And Materials”. Journal of Scientific Reports-C 005 (December 2023), 1-32.
JAMA Yavuz G, Yılmaz E, Halvacı E, Çatal C, Türk İ, Maran FN, Enabah M, Şen F. Nanotechnology In Medical Applications: Recent Developments In Devices And Materials. JSR-C. 2023;:1–32.
MLA Yavuz, Gülcan et al. “Nanotechnology In Medical Applications: Recent Developments In Devices And Materials”. Journal of Scientific Reports-C, no. 005, 2023, pp. 1-32.
Vancouver Yavuz G, Yılmaz E, Halvacı E, Çatal C, Türk İ, Maran FN, Enabah M, Şen F. Nanotechnology In Medical Applications: Recent Developments In Devices And Materials. JSR-C. 2023(005):1-32.