Review
BibTex RIS Cite

Bee anatomy: a comprehensive overview of bee morphology and physiology

Year 2023, Issue: 008, 1 - 19, 31.12.2023

Abstract

The species and anatomy of the bee, a member of the insect class (Insecta), have very interesting importance. Although there are many production-oriented studies on bees and beekeeping in our country, it is very important to get enough information on general morphological structures, bee anatomy, bee biochemistry, bee segments, hive systematics, etc. Bees play a major role in the production of pollinators and various food crops, which are very important for the ecosystem. Therefore, understanding the morphology of bees and accessing accurate information is vital for sustainable agriculture and food security. In addition, our country is a bridge between Asia and Europe and constitutes a very important habitat for bees. However, it is very difficult to reach sufficient resources and products, especially on bee anatomy, bee behavior, and beekeeping. For this reason, in this article, bee morphology, various bee races, division of labor in the hive, reproduction stages, and social order of bees are discussed in detail.

References

  • Van Espen, M., Williams, J.H., Alves, F., Hung, Y., de Graaf, D.C., and Verbeke, W., (2023), Beekeeping in Europe facing climate change: A mixed methods study on perceived impacts and the need to adapt according to stakeholders and beekeepers, Science of The Total Environment, 888, 164255.
  • Brazeau, M.D., (2011), Problematic character coding methods in morphology and their effects, Biological Journal of the Linnean Society, 104, 489–498.
  • Walsh, E.M., Sweet, S., Knap, A., Ing, N., and Rangel, J., (2020), Queen honey bee (Apis mellifera) pheromone and reproductive behavior are affected by pesticide exposure during development, Behavioral Ecology and Sociobiology, 74, 33.
  • Eeraerts, M., Vanderhaegen, R., Smagghe, G., and Meeus, I., (2020), Pollination efficiency and foraging behaviour of honey bees and non‐ Apis bees to sweet cherry, Agricultural and Forest Entomology, 22, 75–82.
  • Kekeçoğlu, M., Çaprazli, T., and Ağan, K., (2021), Erkek Arı Larvasının Sağlık Üzerine Etkisi, Kadirli Uygulamalı Bilimler Fakültesi Dergisi, 1, 139–153.
  • Topal, E., Strant, M., Yücel, B., Köseoğlu, M., Margaoa, n, R., et al., (2018), Ana ve Erkek Arı Larvalarının Biyokimyasal Özellikleri ve Apiterapötik Kullanımı, Hayvansal Üretim, 59, 77–82.
  • Yaşhan, İ., Asiye, B., and Ozan, U., (2020), Acetamipridin Bombus ( Bombus terrestris ) Arılarında Kuluçka Gelişimi Üzerine Etkisi, 15, 91–99.
  • Meira, O.M. de and Gonçalves, R.B., (2021), Comparative morphology and evolution of the cranial musculature in bees (Hymenoptera: Apoidea), Arthropod Structure & Development, 65, 101112.
  • Beutel, R.G., Krogmann, L., and Vilhelmsen, L., (2008), The larval head morphology of Xyela sp. (Xyelidae, Hymenoptera) and its phylogenetic implications, Journal of Zoological Systematics and Evolutionary Research, 46, 118–132.
  • Bernklau, E. and Arathi, H.S., (2023), Seasonal patterns of beneficial phytochemical availability in honey and stored pollen from honey bee colonies in large apiaries, Journal of Economic Entomology.
  • Amdam, G.V. and Omholt, S.W., (2002), The Regulatory Anatomy of Honeybee Lifespan, Journal of Theoretical Biology, 216, 209–228.
  • Müller, A., (1996), Convergent evolution of morphological specializations in Central European bee and honey wasp species as an adaptation to the uptake of pollen from nototribic flowers (Hymenoptera, Apoidea and Masaridae), Biological Journal of the Linnean Society, 57, 235–252.
  • Teixeira, É.W., Negri, G., Meira, R.M.S.A., Message, D., and Salatino, A., (2005), Plant origin of green propolis: Bee behavior, plant anatomy and chemistry, Evidence-Based Complementary and Alternative Medicine, 2, 85–92.
  • Evrimi, A., (n.d.), Bal Arısı Arıların Evrimi, Sistematikteki Yeri , Arı Irkları ve Tanımlama Yöntemleri Arı Ekolojisi Arıların Evrimi, Sistematikteki Yeri , Arı Irkları Ve Tanımlama Yöntemleri Bal Arısı Arıların Evrimi , Sistematikteki Yeri , Arı Irkları ve Tanımla, 1–39.
  • VanEngelsdorp, D. and Meixner, M.D., (2010), A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them, Journal of Invertebrate Pathology, 103, S80–S95.
  • Dadant, C.P., (2018), First Lessons in Beekeeping, Courier Dover Publications.
  • Hanan, B.B., (1955), Studies of the Retrocerebral Complex in the Honey Bee: Part I: Anatomy and Histology, Annals of the Entomological Society of America, 48, 315–320.
  • Grandperrin, D. and Cassier, P., (1983), Anatomy and ultrastructure of the Koschewnikow’s gland of the honey bee, Apis mellifera L. (Hymenoptera : Apidae), International Journal of Insect Morphology and Embryology, 12, 25–42.
  • Ronchetti, F. and Polidori, C., (2020), A sting affair: A global quantitative exploration of bee, wasp and ant hosts of velvet ants, PLOS ONE, 15, e0238888.
  • Tian, L. and Hines, H.M., (2018), Morphological characterization and staging of bumble bee pupae, PeerJ, 6, e6089.
  • Kanatl, Z., Ar, B., Ar, B., Morfoloj, A., and Anatom, V.E., (n.d.), Apis mellifera ), 0–4.
  • Alaux, C., Dantec, C., Parrinello, H., and Le Conte, Y., (2011), Nutrigenomics in honey bees: digital gene expression analysis of pollen’s nutritive effects on healthy and varroa-parasitized bees, BMC Genomics, 12, 496.
  • Jensen, A.B., Palmer, K.A., Boomsma, J.J., and Pedersen, B. V., (2005), Varying degrees of Apis mellifera ligustica introgression in protected populations of the black honeybee, Apis mellifera mellifera, in northwest Europe, Molecular Ecology, 14, 93–106.
  • Albeck, A., Fluss, S., and Persky, R., (1996), Peptidyl epoxides: Novel selective inactivators of cysteine proteases, Journal of the American Chemical Society, 118, 3591–3596.
  • Ament, S.A., Wang, Y., and Robinson, G.E., (2010), Nutritional regulation of division of labor in honey bees: toward a systems biology perspective, WIREs Systems Biology and Medicine, 2, 566–576.
  • Kılıç, F. and Bilgen, G., (2006), İzmir İli Bal Arısı (Apis mellifera L.) Populasyonlarında Enzim Polimorfizmi, Ege Üniversitesi Ziraat Fakültesi Dergisi, 43, 75–84.
  • Fünfhaus, A., Ebeling, J., and Genersch, E., (2018), Bacterial pathogens of bees, Current Opinion in Insect Science, 26, 89–96.
  • Michener, C.D., (1969), Comparative Social Behavior of Bees, Annual Review of Entomology, 14, 299–342.
  • Estoup, A., Solignac, M., and Cornuet, JM., (1994), Precise assessment of the number of patrilines and of genetic relatedness in honeybee colonies, Proceedings of the Royal Society of London. Series B: Biological Sciences, 258, 1–7.
  • Ahyol, E.,, (2007), Bal Arılarında Yumurtanın Yapısı ve Embriyo Gelişim Egg Structure and Embryo Development in Honeybees (Apis mellifera L.), Uludag Arıcılık Dergisi, 7: 4, 135 - 144.
  • Erdoğan, A., Uçak Koç, A., Karacaoğlu, and Mete, (2017), Anadolu Arısı Ege Ekotipi (Apis mellifera anatoliaca) ve İtalyan (Apis mellifera ligustica) X Ege Melezi Bal Arılarının ve Farklı Yüksük Sayılarının Arı Sütü Verimleri Üzerine Etkileri, Harran Tarım ve Gıda Bilimleri Dergisi, 21, 91–98.
  • Kakhramanov, B., Isamukhamedov, S., Safarova, F., Donaev, K., and Mamadov, F., (2021), Morphological features of the Carniolan ( Apis mellifera carnica Pollm) and Carpathian ( Apis mellifera carpatica ) breeds of honey bees, E3S Web of Conferences, 284, 03018.
  • Yalçın, M. and Turgut, C., (2016), Bal Arılarında Koloni̇ Kaybı, Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, 13, 151–151.
  • Albeck, A., Fluss, S., and Persky, R., (1996), Peptidyl epoxides: Novel selective inactivators of cysteine proteases, Journal of the American Chemical Society, 118, 3591–3596.
  • Evrimi, A., (n.d.), Bal Arısı Arıların Evrimi , Sistematikteki Yeri , Arı Irkları ve Tanımlama Yöntemleri Arı Ekolojisi Arıların Evrimi , Sistematikteki Yeri , Arı Irkları Ve Tan ımlama Yöntemleri Bal Arısı Arıların Evrimi , Sistematikteki Yeri , Arı Irkları ve Tanımla, 1–39.
  • Tomazzoli, M.M., Zeggio, A.R.S., Neto, R.D.P., Specht, L., Costa, C., Rocha, M., et al., (2020), Botanical source investigation and evaluation of the effect of seasonality on Brazilian propolis from Apis mellifera L., Scientia Agricola, 77, e20180258.
  • E, D.L., (1971), Adnexal Glands of the Sting Apparatus of Bees: Anatomy and Histology, I (Hymenoptera: Colletidae and Andrenidae) on Jstor, Journal of the Kansas Entomological Society, 44(1).
  • Decourtye, A., Mader, E., and Desneux, N., (2010), Landscape enhancement of floral resources for honey bees in agro-ecosystems, Apidologie, 41, 264–277.
  • Akyol, E., (2007), Bal Arılarında Yumurtanın Yapısı ve Embriyo Gelişimi, Uludağ Arıcılık Dergisi, 7, 135–144.
  • Di Pasquale, G., Salignon, M., Le Conte, Y., Belzunces, L.P., Decourtye, A., Kretzschmar, A., et al., (2013), Influence of Pollen Nutrition on Honey Bee Health: Do Pollen Quality and Diversity Matter?, PLoS ONE, 8, e72016.
  • Brodschneider, R. and Crailsheim, K., (2010), Nutrition and health in honey bees, Apidologie, 41, 278–294.
  • El-Seedi, H.R., Eid, N., Abd El-Wahed, A.A., Rateb, M.E., Afifi, H.S., Algethami, A.F., et al., (2022), Honey Bee Products: Preclinical and Clinical Studies of Their Anti-inflammatory and Immunomodulatory Properties, Frontiers in Nutrition, 8,.
  • Hepburn, H.R., Radloff, S.E., and Fuchs, S., (1998), Population structure and the interface between Apis mellifera capensis and Apis mellifera scutellata, Apidologie, 29, 333–346.
  • Barbosa, W.F., Tomé, H.V. V., Bernardes, R.C., Siqueira, M.A.L., Smagghe, G., and Guedes, R.N.C., (2015), Biopesticide-induced behavioral and morphological alterations in the stingless bee Melipona quadrifasciata, Environmental Toxicology and Chemistry, 34, 2149–2158.
  • Yücel, B. and Köseoğlu, M., (2009), Comparisons of Mugla Ecotype and Italian Cross Honey Bees for Some Performances in Aegean Region (Turkey), Kafkas Universitesi Veteriner Fakultesi Dergisi,.
  • Zhao, D., Chen, D., Su, X., Zhang, X., and Liu, Y., (2022), Transcriptome explores changes in gene expression profile contributed by Camellia sinensis (L.) in Apis cerana cerana and Apis mellifera ligustica, Journal of Asia-Pacific Entomology, 25, 101973.
  • Berenbaum, M.R. and Calla, B., (2021), Honey as a Functional Food for Apis mellifera, Annual Review of Entomology, 66, 185–208.
  • Uçak Koç, A., (2017), Farklı Mevsimlerde Yetiştirilen Kafkas (Apis mellifera caucasica), İtalyan (Apis mellifera ligustica) ırkı ve Anadolu arısı Ege Ekotipi (Apis mellifera ataloliaca) Ana Arıların Bazı Feromon Miktarlarının Belirlenmesi, SAÜ Fen Bilimleri Enstitüsü Dergisi, 21, 1–1.
  • Evans, J.D. and Wheeler, D.E., (1999), Differential gene expression between developing queens and workers in the honey bee, Apis mellifera, Proceedings of the National Academy of Sciences, 96, 5575–5580.
  • Plate, M., Bernstein, R., Hoppe, A., and Bienefeld, K., (2019), The importance of controlled mating in honeybee breeding, Genetics Selection Evolution, 51, 74.
  • Kečkeš, S., Gašić, U., Veličković, T.Ć., Milojković-Opsenica, D., Natić, M., and Tešić, Ž., (2013), The determination of phenolic profiles of Serbian unifloral honeys using ultra-high-performance liquid chromatography/high resolution accurate mass spectrometry, Food Chemistry, 138, 32–40.
  • Oxley, P.R. and Oldroyd, B.P., (2010), The Genetic Architecture of Honeybee Breeding. in: pp. 83–118.
  • Keller, I., Fluri, P., and Imdorf, A., (2005), Pollen nutrition and colony development in honey bees—Part II, Bee World, 86, 27–34.
  • Seltzer, R., Kamer, Y., Kahanov, P., Splitt, A., Bieńkowska, M., Hefetz, A., et al., (2023), Breeding for hygienic behavior in honey bees ( Apis mellifera ): a strong paternal effect, Journal of Apicultural Research, 62, 419–428.
  • Maucourt, S., Rousseau, A., Fortin, F., Robert, C., and Giovenazzo, P., (2023), Observation of Genetic Gain with Instrumental Insemination of Honeybee Queens, Insects, 14, 301.
  • Gallant, A.L., Euliss, N.H., and Browning, Z., (2014), Mapping Large-Area Landscape Suitability for Honey Bees to Assess the Influence of Land-Use Change on Sustainability of National Pollination Services, PLoS ONE, 9, e99268.
  • Arathi, H.S. and Spivak, M., (2001), Influence of colony genotypic composition on the performance of hygienic behaviour in the honeybee, Apis mellifera L., Animal Behaviour, 62, 57–66.
  • Honkanen, A., Hensgen, R., Kannan, K., Adden, A., Warrant, E., Wcislo, W., et al., (2023), Parallel motion vision pathways in the brain of a tropical bee, Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1–29.
  • Boutin, S., Alburaki, M., Mercier, P.-L., Giovenazzo, P., and Derome, N., (2015), Differential gene expression between hygienic and non-hygienic honeybee (Apis mellifera L.) hives, BMC Genomics, 16, 500.
  • Naug, D., (2009), Nutritional stress due to habitat loss may explain recent honeybee colony collapses, Biological Conservation, 142, 2369–2372.
  • Ling, T.C., Phokasem, P., Sinpoo, C., Chantawannakul, P., Khongphinitbunjong, K., and Disayathanoowat, T., (2023), Tropilaelaps mercedesae Infestation Is Correlated with Injury Numbers on the Brood and the Population Size of Honey Bee Apis mellifera, Animals, 13, 1318.
  • Chen, Y.-W., Peng, C.-C., Sung, I.-H., Wu, M.-C., Nai, Y.-S., Gregorc, A., et al., (2023), Imidacloprid Pesticide Causes Unexpectedly Severe Bioelement Deficiencies and Imbalance in Honey Bees Even at Sublethal Doses, Animals 2023, Vol. 13, Page 615, 13, 615.
  • Crailsheim, K., Schneider, L.H.W., Hrassnigg, N., Bühlmann, G., Brosch, U., Gmeinbauer, R., et al., (1992), Pollen consumption and utilization in worker honeybees (Apis mellifera carnica): Dependence on individual age and function, Journal of Insect Physiology, 38, 409–419.
  • Ribi, W., Senden, T.J., Sakellariou, A., Limaye, A., and Zhang, S., (2008), Imaging honey bee brain anatomy with micro-X-ray-computed tomography, Journal of Neuroscience Methods, 171, 93–97.
  • Morse, R.A., (1991), Honeybees forever, Trends in Ecology & Evolution, 6, 337–338.
  • Şen, B., Aygün, A., Okyay, T.O., Şavk, A., Kartop, R., and Şen, F., (2018), Monodisperse palladium nanoparticles assembled on graphene oxide with the high catalytic activity and reusability in the dehydrogenation of dimethylamine-borane, International Journal of Hydrogen Energy, 43, 20176–20182.
  • Göl, F., Aygün, A., Seyrankaya, A., Gür, T., Yenikaya, C., and Şen, F., (2020), Green synthesis and characterization of Camellia sinensis mediated silver nanoparticles for antibacterial ceramic applications, Materials Chemistry and Physics, 250, 123037.
  • Şen, B., Aygün, A., Şavk, A., Akocak, S., and Şen, F., (2021), Corrigendum to “Bimetallic palladium–iridium alloy nanoparticles as highly efficient and stable catalyst for the hydrogen evolution reaction,” International Journal of Hydrogen Energy, 46, 20792.
  • Demirkan, B., Bozkurt, S., Cellat, K., Arıkan, K., Yılmaz, M., Şavk, A., et al., (2020), Palladium supported on polypyrrole/reduced graphene oxide nanoparticles for simultaneous biosensing application of ascorbic acid, dopamine, and uric acid, Scientific Reports, 10, 2946.
  • Sen, B., Kuyuldar, E., Demirkan, B., Onal Okyay, T., Şavk, A., and Sen, F., (2018), Highly efficient polymer supported monodisperse ruthenium-nickel nanocomposites for dehydrocoupling of dimethylamine borane, Journal of Colloid and Interface Science, 526, 480–486.
  • Arikan, K., Burhan, H., Bayat, R., and Sen, F., (2022), Glucose nano biosensor with non-enzymatic excellent sensitivity prepared with nickel–cobalt nanocomposites on f-MWCNT, Chemosphere, 291, 132720.
  • Demir, E., Savk, A., Sen, B., and Sen, F., (2017), A novel monodisperse metal nanoparticles anchored graphene oxide as Counter Electrode for Dye-Sensitized Solar Cells, Nano-Structures & Nano-Objects, 12, 41–45.
  • Darabi, R., Karimi-Maleh, H., Akin, M., Arikan, K., Zhang, Z., Bayat, R., et al., (2023), Simultaneous determination of ascorbic acid, dopamine, and uric acid with a highly selective and sensitive reduced graphene oxide/polypyrrole-platinum nanocomposite modified electrochemical sensor, Electrochimica Acta, 457, 142402.
  • Şen, F. and Gökaǧaç, G., (2007), Activity of Carbon-Supported Platinum Nanoparticles toward Methanol Oxidation Reaction: Role of Metal Precursor and a New Surfactant, tert -Octanethiol, The Journal of Physical Chemistry C, 111, 1467–1473.
  • Şen, F. and Gökağaç, G., (2014), Pt nanoparticles synthesized with new surfactants: improvement in C1–C3 alcohol oxidation catalytic activity, Journal of Applied Electrochemistry, 44, 199–207.
  • Askari, M.B., Salarizadeh, P., Di Bartolomeo, A., and Şen, F., (2021), Enhanced electrochemical performance of MnNi 2 O 4 /rGO nanocomposite as pseudocapacitor electrode material and methanol electro-oxidation catalyst, Nanotechnology, 32, 325707.
  • Ayranci, R., Baskaya, G., Guzel, M., Bozkurt, S., Ak, M., Savk, A., et al., (2017), Enhanced optical and electrical properties of PEDOT via nanostructured carbon materials: A comparative investigation, Nano-Structures & Nano-Objects, 11, 13–19.
  • Ertan, S., Şen, F., Şen, S., and Gökağaç, G., (2012), Platinum nanocatalysts prepared with different surfactants for C1–C3 alcohol oxidations and their surface morphologies by AFM, Journal of Nanoparticle Research, 14, 922.
  • Şen, F., Şen, S., and Gökağaç, G., (2011), Efficiency enhancement of methanol/ethanol oxidation reactions on Ptnanoparticles prepared using a new surfactant, 1,1-dimethyl heptanethiol, Phys. Chem. Chem. Phys., 13, 1676–1684.
  • Ayranci, R., Başkaya, G., Güzel, M., Bozkurt, S., Şen, F., and Ak, M., (2017), Carbon Based Nanomaterials for High Performance Optoelectrochemical Systems, ChemistrySelect, 2, 1548–1555.
  • Şen, F., Gökağaç, G., and Şen, S., (2013), High performance Pt nanoparticles prepared by new surfactants for C1 to C3 alcohol oxidation reactions, Journal of Nanoparticle Research, 15, 1979.
  • Unal, F.A., Ok, S., Unal, M., Topal, S., Cellat, K., and Şen, F., (2020), Synthesis, characterization, and application of transition metals (Ni, Zr, and Fe) doped TiO2 photoelectrodes for dye-sensitized solar cells, Journal of Molecular Liquids, 299, 112177.
  • Taslimi, P., Türkan, F., Cetin, A., Burhan, H., Karaman, M., Bildirici, I., et al., (2019), Pyrazole[3,4-d]pyridazine derivatives: Molecular docking and explore of acetylcholinesterase and carbonic anhydrase enzymes inhibitors as anticholinergics potentials, Bioorganic Chemistry, 92, 103213.
  • Ni, K., Wu, Y., Karimi, F., Gulbagca, F., Seyrankaya, A., Esra Altuner, E., et al., (2023), Palladium based bimetallic nanocatalysts: Synthesis, characterization and hydrogen fuel production, Fuel, 341, 127577.
  • Sen, F., Boghossian, A.A., Sen, S., Ulissi, Z.W., Zhang, J., and Strano, M.S., (2012), Observation of Oscillatory Surface Reactions of Riboflavin, Trolox, and Singlet Oxygen Using Single Carbon Nanotube Fluorescence Spectroscopy, ACS Nano, 6, 10632–10645.
  • Sen, B., Kuzu, S., Demir, E., Yıldırır, E., and Sen, F., (2017), Highly efficient catalytic dehydrogenation of dimethyl ammonia borane via monodisperse palladium–nickel alloy nanoparticles assembled on PEDOT, International Journal of Hydrogen Energy, 42, 23307–23314.
  • Goksu, H., Yıldız, Y., Çelik, B., Yazici, M., Kilbas, B., and Sen, F., (2016), Eco-friendly hydrogenation of aromatic aldehyde compounds by tandem dehydrogenation of dimethylamine-borane in the presence of a reduced graphene oxide furnished platinum nanocatalyst, Catalysis Science & Technology, 6, 2318–2324.
  • Sen, B., Kuzu, S., Demir, E., Onal Okyay, T., and Sen, F., (2017), Hydrogen liberation from the dehydrocoupling of dimethylamine–borane at room temperature by using novel and highly monodispersed RuPtNi nanocatalysts decorated with graphene oxide, International Journal of Hydrogen Energy, 42, 23299–23306.
  • Sen, F., (2021), Nanomaterials for direct alcohol fuel cells : characterization, design, and electrocatalysis,.
  • Şahin, B., Demir, E., Aygün, A., Gündüz, H., and Şen, F., (2017), Investigation of the effect of pomegranate extract and monodisperse silver nanoparticle combination on MCF-7 cell line, Journal of Biotechnology, 260, 79–83.
Year 2023, Issue: 008, 1 - 19, 31.12.2023

Abstract

References

  • Van Espen, M., Williams, J.H., Alves, F., Hung, Y., de Graaf, D.C., and Verbeke, W., (2023), Beekeeping in Europe facing climate change: A mixed methods study on perceived impacts and the need to adapt according to stakeholders and beekeepers, Science of The Total Environment, 888, 164255.
  • Brazeau, M.D., (2011), Problematic character coding methods in morphology and their effects, Biological Journal of the Linnean Society, 104, 489–498.
  • Walsh, E.M., Sweet, S., Knap, A., Ing, N., and Rangel, J., (2020), Queen honey bee (Apis mellifera) pheromone and reproductive behavior are affected by pesticide exposure during development, Behavioral Ecology and Sociobiology, 74, 33.
  • Eeraerts, M., Vanderhaegen, R., Smagghe, G., and Meeus, I., (2020), Pollination efficiency and foraging behaviour of honey bees and non‐ Apis bees to sweet cherry, Agricultural and Forest Entomology, 22, 75–82.
  • Kekeçoğlu, M., Çaprazli, T., and Ağan, K., (2021), Erkek Arı Larvasının Sağlık Üzerine Etkisi, Kadirli Uygulamalı Bilimler Fakültesi Dergisi, 1, 139–153.
  • Topal, E., Strant, M., Yücel, B., Köseoğlu, M., Margaoa, n, R., et al., (2018), Ana ve Erkek Arı Larvalarının Biyokimyasal Özellikleri ve Apiterapötik Kullanımı, Hayvansal Üretim, 59, 77–82.
  • Yaşhan, İ., Asiye, B., and Ozan, U., (2020), Acetamipridin Bombus ( Bombus terrestris ) Arılarında Kuluçka Gelişimi Üzerine Etkisi, 15, 91–99.
  • Meira, O.M. de and Gonçalves, R.B., (2021), Comparative morphology and evolution of the cranial musculature in bees (Hymenoptera: Apoidea), Arthropod Structure & Development, 65, 101112.
  • Beutel, R.G., Krogmann, L., and Vilhelmsen, L., (2008), The larval head morphology of Xyela sp. (Xyelidae, Hymenoptera) and its phylogenetic implications, Journal of Zoological Systematics and Evolutionary Research, 46, 118–132.
  • Bernklau, E. and Arathi, H.S., (2023), Seasonal patterns of beneficial phytochemical availability in honey and stored pollen from honey bee colonies in large apiaries, Journal of Economic Entomology.
  • Amdam, G.V. and Omholt, S.W., (2002), The Regulatory Anatomy of Honeybee Lifespan, Journal of Theoretical Biology, 216, 209–228.
  • Müller, A., (1996), Convergent evolution of morphological specializations in Central European bee and honey wasp species as an adaptation to the uptake of pollen from nototribic flowers (Hymenoptera, Apoidea and Masaridae), Biological Journal of the Linnean Society, 57, 235–252.
  • Teixeira, É.W., Negri, G., Meira, R.M.S.A., Message, D., and Salatino, A., (2005), Plant origin of green propolis: Bee behavior, plant anatomy and chemistry, Evidence-Based Complementary and Alternative Medicine, 2, 85–92.
  • Evrimi, A., (n.d.), Bal Arısı Arıların Evrimi, Sistematikteki Yeri , Arı Irkları ve Tanımlama Yöntemleri Arı Ekolojisi Arıların Evrimi, Sistematikteki Yeri , Arı Irkları Ve Tanımlama Yöntemleri Bal Arısı Arıların Evrimi , Sistematikteki Yeri , Arı Irkları ve Tanımla, 1–39.
  • VanEngelsdorp, D. and Meixner, M.D., (2010), A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them, Journal of Invertebrate Pathology, 103, S80–S95.
  • Dadant, C.P., (2018), First Lessons in Beekeeping, Courier Dover Publications.
  • Hanan, B.B., (1955), Studies of the Retrocerebral Complex in the Honey Bee: Part I: Anatomy and Histology, Annals of the Entomological Society of America, 48, 315–320.
  • Grandperrin, D. and Cassier, P., (1983), Anatomy and ultrastructure of the Koschewnikow’s gland of the honey bee, Apis mellifera L. (Hymenoptera : Apidae), International Journal of Insect Morphology and Embryology, 12, 25–42.
  • Ronchetti, F. and Polidori, C., (2020), A sting affair: A global quantitative exploration of bee, wasp and ant hosts of velvet ants, PLOS ONE, 15, e0238888.
  • Tian, L. and Hines, H.M., (2018), Morphological characterization and staging of bumble bee pupae, PeerJ, 6, e6089.
  • Kanatl, Z., Ar, B., Ar, B., Morfoloj, A., and Anatom, V.E., (n.d.), Apis mellifera ), 0–4.
  • Alaux, C., Dantec, C., Parrinello, H., and Le Conte, Y., (2011), Nutrigenomics in honey bees: digital gene expression analysis of pollen’s nutritive effects on healthy and varroa-parasitized bees, BMC Genomics, 12, 496.
  • Jensen, A.B., Palmer, K.A., Boomsma, J.J., and Pedersen, B. V., (2005), Varying degrees of Apis mellifera ligustica introgression in protected populations of the black honeybee, Apis mellifera mellifera, in northwest Europe, Molecular Ecology, 14, 93–106.
  • Albeck, A., Fluss, S., and Persky, R., (1996), Peptidyl epoxides: Novel selective inactivators of cysteine proteases, Journal of the American Chemical Society, 118, 3591–3596.
  • Ament, S.A., Wang, Y., and Robinson, G.E., (2010), Nutritional regulation of division of labor in honey bees: toward a systems biology perspective, WIREs Systems Biology and Medicine, 2, 566–576.
  • Kılıç, F. and Bilgen, G., (2006), İzmir İli Bal Arısı (Apis mellifera L.) Populasyonlarında Enzim Polimorfizmi, Ege Üniversitesi Ziraat Fakültesi Dergisi, 43, 75–84.
  • Fünfhaus, A., Ebeling, J., and Genersch, E., (2018), Bacterial pathogens of bees, Current Opinion in Insect Science, 26, 89–96.
  • Michener, C.D., (1969), Comparative Social Behavior of Bees, Annual Review of Entomology, 14, 299–342.
  • Estoup, A., Solignac, M., and Cornuet, JM., (1994), Precise assessment of the number of patrilines and of genetic relatedness in honeybee colonies, Proceedings of the Royal Society of London. Series B: Biological Sciences, 258, 1–7.
  • Ahyol, E.,, (2007), Bal Arılarında Yumurtanın Yapısı ve Embriyo Gelişim Egg Structure and Embryo Development in Honeybees (Apis mellifera L.), Uludag Arıcılık Dergisi, 7: 4, 135 - 144.
  • Erdoğan, A., Uçak Koç, A., Karacaoğlu, and Mete, (2017), Anadolu Arısı Ege Ekotipi (Apis mellifera anatoliaca) ve İtalyan (Apis mellifera ligustica) X Ege Melezi Bal Arılarının ve Farklı Yüksük Sayılarının Arı Sütü Verimleri Üzerine Etkileri, Harran Tarım ve Gıda Bilimleri Dergisi, 21, 91–98.
  • Kakhramanov, B., Isamukhamedov, S., Safarova, F., Donaev, K., and Mamadov, F., (2021), Morphological features of the Carniolan ( Apis mellifera carnica Pollm) and Carpathian ( Apis mellifera carpatica ) breeds of honey bees, E3S Web of Conferences, 284, 03018.
  • Yalçın, M. and Turgut, C., (2016), Bal Arılarında Koloni̇ Kaybı, Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, 13, 151–151.
  • Albeck, A., Fluss, S., and Persky, R., (1996), Peptidyl epoxides: Novel selective inactivators of cysteine proteases, Journal of the American Chemical Society, 118, 3591–3596.
  • Evrimi, A., (n.d.), Bal Arısı Arıların Evrimi , Sistematikteki Yeri , Arı Irkları ve Tanımlama Yöntemleri Arı Ekolojisi Arıların Evrimi , Sistematikteki Yeri , Arı Irkları Ve Tan ımlama Yöntemleri Bal Arısı Arıların Evrimi , Sistematikteki Yeri , Arı Irkları ve Tanımla, 1–39.
  • Tomazzoli, M.M., Zeggio, A.R.S., Neto, R.D.P., Specht, L., Costa, C., Rocha, M., et al., (2020), Botanical source investigation and evaluation of the effect of seasonality on Brazilian propolis from Apis mellifera L., Scientia Agricola, 77, e20180258.
  • E, D.L., (1971), Adnexal Glands of the Sting Apparatus of Bees: Anatomy and Histology, I (Hymenoptera: Colletidae and Andrenidae) on Jstor, Journal of the Kansas Entomological Society, 44(1).
  • Decourtye, A., Mader, E., and Desneux, N., (2010), Landscape enhancement of floral resources for honey bees in agro-ecosystems, Apidologie, 41, 264–277.
  • Akyol, E., (2007), Bal Arılarında Yumurtanın Yapısı ve Embriyo Gelişimi, Uludağ Arıcılık Dergisi, 7, 135–144.
  • Di Pasquale, G., Salignon, M., Le Conte, Y., Belzunces, L.P., Decourtye, A., Kretzschmar, A., et al., (2013), Influence of Pollen Nutrition on Honey Bee Health: Do Pollen Quality and Diversity Matter?, PLoS ONE, 8, e72016.
  • Brodschneider, R. and Crailsheim, K., (2010), Nutrition and health in honey bees, Apidologie, 41, 278–294.
  • El-Seedi, H.R., Eid, N., Abd El-Wahed, A.A., Rateb, M.E., Afifi, H.S., Algethami, A.F., et al., (2022), Honey Bee Products: Preclinical and Clinical Studies of Their Anti-inflammatory and Immunomodulatory Properties, Frontiers in Nutrition, 8,.
  • Hepburn, H.R., Radloff, S.E., and Fuchs, S., (1998), Population structure and the interface between Apis mellifera capensis and Apis mellifera scutellata, Apidologie, 29, 333–346.
  • Barbosa, W.F., Tomé, H.V. V., Bernardes, R.C., Siqueira, M.A.L., Smagghe, G., and Guedes, R.N.C., (2015), Biopesticide-induced behavioral and morphological alterations in the stingless bee Melipona quadrifasciata, Environmental Toxicology and Chemistry, 34, 2149–2158.
  • Yücel, B. and Köseoğlu, M., (2009), Comparisons of Mugla Ecotype and Italian Cross Honey Bees for Some Performances in Aegean Region (Turkey), Kafkas Universitesi Veteriner Fakultesi Dergisi,.
  • Zhao, D., Chen, D., Su, X., Zhang, X., and Liu, Y., (2022), Transcriptome explores changes in gene expression profile contributed by Camellia sinensis (L.) in Apis cerana cerana and Apis mellifera ligustica, Journal of Asia-Pacific Entomology, 25, 101973.
  • Berenbaum, M.R. and Calla, B., (2021), Honey as a Functional Food for Apis mellifera, Annual Review of Entomology, 66, 185–208.
  • Uçak Koç, A., (2017), Farklı Mevsimlerde Yetiştirilen Kafkas (Apis mellifera caucasica), İtalyan (Apis mellifera ligustica) ırkı ve Anadolu arısı Ege Ekotipi (Apis mellifera ataloliaca) Ana Arıların Bazı Feromon Miktarlarının Belirlenmesi, SAÜ Fen Bilimleri Enstitüsü Dergisi, 21, 1–1.
  • Evans, J.D. and Wheeler, D.E., (1999), Differential gene expression between developing queens and workers in the honey bee, Apis mellifera, Proceedings of the National Academy of Sciences, 96, 5575–5580.
  • Plate, M., Bernstein, R., Hoppe, A., and Bienefeld, K., (2019), The importance of controlled mating in honeybee breeding, Genetics Selection Evolution, 51, 74.
  • Kečkeš, S., Gašić, U., Veličković, T.Ć., Milojković-Opsenica, D., Natić, M., and Tešić, Ž., (2013), The determination of phenolic profiles of Serbian unifloral honeys using ultra-high-performance liquid chromatography/high resolution accurate mass spectrometry, Food Chemistry, 138, 32–40.
  • Oxley, P.R. and Oldroyd, B.P., (2010), The Genetic Architecture of Honeybee Breeding. in: pp. 83–118.
  • Keller, I., Fluri, P., and Imdorf, A., (2005), Pollen nutrition and colony development in honey bees—Part II, Bee World, 86, 27–34.
  • Seltzer, R., Kamer, Y., Kahanov, P., Splitt, A., Bieńkowska, M., Hefetz, A., et al., (2023), Breeding for hygienic behavior in honey bees ( Apis mellifera ): a strong paternal effect, Journal of Apicultural Research, 62, 419–428.
  • Maucourt, S., Rousseau, A., Fortin, F., Robert, C., and Giovenazzo, P., (2023), Observation of Genetic Gain with Instrumental Insemination of Honeybee Queens, Insects, 14, 301.
  • Gallant, A.L., Euliss, N.H., and Browning, Z., (2014), Mapping Large-Area Landscape Suitability for Honey Bees to Assess the Influence of Land-Use Change on Sustainability of National Pollination Services, PLoS ONE, 9, e99268.
  • Arathi, H.S. and Spivak, M., (2001), Influence of colony genotypic composition on the performance of hygienic behaviour in the honeybee, Apis mellifera L., Animal Behaviour, 62, 57–66.
  • Honkanen, A., Hensgen, R., Kannan, K., Adden, A., Warrant, E., Wcislo, W., et al., (2023), Parallel motion vision pathways in the brain of a tropical bee, Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1–29.
  • Boutin, S., Alburaki, M., Mercier, P.-L., Giovenazzo, P., and Derome, N., (2015), Differential gene expression between hygienic and non-hygienic honeybee (Apis mellifera L.) hives, BMC Genomics, 16, 500.
  • Naug, D., (2009), Nutritional stress due to habitat loss may explain recent honeybee colony collapses, Biological Conservation, 142, 2369–2372.
  • Ling, T.C., Phokasem, P., Sinpoo, C., Chantawannakul, P., Khongphinitbunjong, K., and Disayathanoowat, T., (2023), Tropilaelaps mercedesae Infestation Is Correlated with Injury Numbers on the Brood and the Population Size of Honey Bee Apis mellifera, Animals, 13, 1318.
  • Chen, Y.-W., Peng, C.-C., Sung, I.-H., Wu, M.-C., Nai, Y.-S., Gregorc, A., et al., (2023), Imidacloprid Pesticide Causes Unexpectedly Severe Bioelement Deficiencies and Imbalance in Honey Bees Even at Sublethal Doses, Animals 2023, Vol. 13, Page 615, 13, 615.
  • Crailsheim, K., Schneider, L.H.W., Hrassnigg, N., Bühlmann, G., Brosch, U., Gmeinbauer, R., et al., (1992), Pollen consumption and utilization in worker honeybees (Apis mellifera carnica): Dependence on individual age and function, Journal of Insect Physiology, 38, 409–419.
  • Ribi, W., Senden, T.J., Sakellariou, A., Limaye, A., and Zhang, S., (2008), Imaging honey bee brain anatomy with micro-X-ray-computed tomography, Journal of Neuroscience Methods, 171, 93–97.
  • Morse, R.A., (1991), Honeybees forever, Trends in Ecology & Evolution, 6, 337–338.
  • Şen, B., Aygün, A., Okyay, T.O., Şavk, A., Kartop, R., and Şen, F., (2018), Monodisperse palladium nanoparticles assembled on graphene oxide with the high catalytic activity and reusability in the dehydrogenation of dimethylamine-borane, International Journal of Hydrogen Energy, 43, 20176–20182.
  • Göl, F., Aygün, A., Seyrankaya, A., Gür, T., Yenikaya, C., and Şen, F., (2020), Green synthesis and characterization of Camellia sinensis mediated silver nanoparticles for antibacterial ceramic applications, Materials Chemistry and Physics, 250, 123037.
  • Şen, B., Aygün, A., Şavk, A., Akocak, S., and Şen, F., (2021), Corrigendum to “Bimetallic palladium–iridium alloy nanoparticles as highly efficient and stable catalyst for the hydrogen evolution reaction,” International Journal of Hydrogen Energy, 46, 20792.
  • Demirkan, B., Bozkurt, S., Cellat, K., Arıkan, K., Yılmaz, M., Şavk, A., et al., (2020), Palladium supported on polypyrrole/reduced graphene oxide nanoparticles for simultaneous biosensing application of ascorbic acid, dopamine, and uric acid, Scientific Reports, 10, 2946.
  • Sen, B., Kuyuldar, E., Demirkan, B., Onal Okyay, T., Şavk, A., and Sen, F., (2018), Highly efficient polymer supported monodisperse ruthenium-nickel nanocomposites for dehydrocoupling of dimethylamine borane, Journal of Colloid and Interface Science, 526, 480–486.
  • Arikan, K., Burhan, H., Bayat, R., and Sen, F., (2022), Glucose nano biosensor with non-enzymatic excellent sensitivity prepared with nickel–cobalt nanocomposites on f-MWCNT, Chemosphere, 291, 132720.
  • Demir, E., Savk, A., Sen, B., and Sen, F., (2017), A novel monodisperse metal nanoparticles anchored graphene oxide as Counter Electrode for Dye-Sensitized Solar Cells, Nano-Structures & Nano-Objects, 12, 41–45.
  • Darabi, R., Karimi-Maleh, H., Akin, M., Arikan, K., Zhang, Z., Bayat, R., et al., (2023), Simultaneous determination of ascorbic acid, dopamine, and uric acid with a highly selective and sensitive reduced graphene oxide/polypyrrole-platinum nanocomposite modified electrochemical sensor, Electrochimica Acta, 457, 142402.
  • Şen, F. and Gökaǧaç, G., (2007), Activity of Carbon-Supported Platinum Nanoparticles toward Methanol Oxidation Reaction: Role of Metal Precursor and a New Surfactant, tert -Octanethiol, The Journal of Physical Chemistry C, 111, 1467–1473.
  • Şen, F. and Gökağaç, G., (2014), Pt nanoparticles synthesized with new surfactants: improvement in C1–C3 alcohol oxidation catalytic activity, Journal of Applied Electrochemistry, 44, 199–207.
  • Askari, M.B., Salarizadeh, P., Di Bartolomeo, A., and Şen, F., (2021), Enhanced electrochemical performance of MnNi 2 O 4 /rGO nanocomposite as pseudocapacitor electrode material and methanol electro-oxidation catalyst, Nanotechnology, 32, 325707.
  • Ayranci, R., Baskaya, G., Guzel, M., Bozkurt, S., Ak, M., Savk, A., et al., (2017), Enhanced optical and electrical properties of PEDOT via nanostructured carbon materials: A comparative investigation, Nano-Structures & Nano-Objects, 11, 13–19.
  • Ertan, S., Şen, F., Şen, S., and Gökağaç, G., (2012), Platinum nanocatalysts prepared with different surfactants for C1–C3 alcohol oxidations and their surface morphologies by AFM, Journal of Nanoparticle Research, 14, 922.
  • Şen, F., Şen, S., and Gökağaç, G., (2011), Efficiency enhancement of methanol/ethanol oxidation reactions on Ptnanoparticles prepared using a new surfactant, 1,1-dimethyl heptanethiol, Phys. Chem. Chem. Phys., 13, 1676–1684.
  • Ayranci, R., Başkaya, G., Güzel, M., Bozkurt, S., Şen, F., and Ak, M., (2017), Carbon Based Nanomaterials for High Performance Optoelectrochemical Systems, ChemistrySelect, 2, 1548–1555.
  • Şen, F., Gökağaç, G., and Şen, S., (2013), High performance Pt nanoparticles prepared by new surfactants for C1 to C3 alcohol oxidation reactions, Journal of Nanoparticle Research, 15, 1979.
  • Unal, F.A., Ok, S., Unal, M., Topal, S., Cellat, K., and Şen, F., (2020), Synthesis, characterization, and application of transition metals (Ni, Zr, and Fe) doped TiO2 photoelectrodes for dye-sensitized solar cells, Journal of Molecular Liquids, 299, 112177.
  • Taslimi, P., Türkan, F., Cetin, A., Burhan, H., Karaman, M., Bildirici, I., et al., (2019), Pyrazole[3,4-d]pyridazine derivatives: Molecular docking and explore of acetylcholinesterase and carbonic anhydrase enzymes inhibitors as anticholinergics potentials, Bioorganic Chemistry, 92, 103213.
  • Ni, K., Wu, Y., Karimi, F., Gulbagca, F., Seyrankaya, A., Esra Altuner, E., et al., (2023), Palladium based bimetallic nanocatalysts: Synthesis, characterization and hydrogen fuel production, Fuel, 341, 127577.
  • Sen, F., Boghossian, A.A., Sen, S., Ulissi, Z.W., Zhang, J., and Strano, M.S., (2012), Observation of Oscillatory Surface Reactions of Riboflavin, Trolox, and Singlet Oxygen Using Single Carbon Nanotube Fluorescence Spectroscopy, ACS Nano, 6, 10632–10645.
  • Sen, B., Kuzu, S., Demir, E., Yıldırır, E., and Sen, F., (2017), Highly efficient catalytic dehydrogenation of dimethyl ammonia borane via monodisperse palladium–nickel alloy nanoparticles assembled on PEDOT, International Journal of Hydrogen Energy, 42, 23307–23314.
  • Goksu, H., Yıldız, Y., Çelik, B., Yazici, M., Kilbas, B., and Sen, F., (2016), Eco-friendly hydrogenation of aromatic aldehyde compounds by tandem dehydrogenation of dimethylamine-borane in the presence of a reduced graphene oxide furnished platinum nanocatalyst, Catalysis Science & Technology, 6, 2318–2324.
  • Sen, B., Kuzu, S., Demir, E., Onal Okyay, T., and Sen, F., (2017), Hydrogen liberation from the dehydrocoupling of dimethylamine–borane at room temperature by using novel and highly monodispersed RuPtNi nanocatalysts decorated with graphene oxide, International Journal of Hydrogen Energy, 42, 23299–23306.
  • Sen, F., (2021), Nanomaterials for direct alcohol fuel cells : characterization, design, and electrocatalysis,.
  • Şahin, B., Demir, E., Aygün, A., Gündüz, H., and Şen, F., (2017), Investigation of the effect of pomegranate extract and monodisperse silver nanoparticle combination on MCF-7 cell line, Journal of Biotechnology, 260, 79–83.
There are 90 citations in total.

Details

Primary Language English
Subjects Analytical Biochemistry
Journal Section Reviews
Authors

Ebru Halvacı This is me 0009-0003-6062-7622

Teslime Kozak This is me 0009-0006-9446-8449

Mert Gül 0009-0005-7215-541X

Hatice Kars 0000-0001-6843-9026

Fatih Şen 0000-0001-6843-9026

Publication Date December 31, 2023
Submission Date June 2, 2023
Published in Issue Year 2023 Issue: 008

Cite

APA Halvacı, E., Kozak, T., Gül, M., Kars, H., et al. (2023). Bee anatomy: a comprehensive overview of bee morphology and physiology. Journal of Scientific Reports-B(008), 1-19.
AMA Halvacı E, Kozak T, Gül M, Kars H, Şen F. Bee anatomy: a comprehensive overview of bee morphology and physiology. JSR-B. December 2023;(008):1-19.
Chicago Halvacı, Ebru, Teslime Kozak, Mert Gül, Hatice Kars, and Fatih Şen. “Bee Anatomy: A Comprehensive Overview of Bee Morphology and Physiology”. Journal of Scientific Reports-B, no. 008 (December 2023): 1-19.
EndNote Halvacı E, Kozak T, Gül M, Kars H, Şen F (December 1, 2023) Bee anatomy: a comprehensive overview of bee morphology and physiology. Journal of Scientific Reports-B 008 1–19.
IEEE E. Halvacı, T. Kozak, M. Gül, H. Kars, and F. Şen, “Bee anatomy: a comprehensive overview of bee morphology and physiology”, JSR-B, no. 008, pp. 1–19, December 2023.
ISNAD Halvacı, Ebru et al. “Bee Anatomy: A Comprehensive Overview of Bee Morphology and Physiology”. Journal of Scientific Reports-B 008 (December 2023), 1-19.
JAMA Halvacı E, Kozak T, Gül M, Kars H, Şen F. Bee anatomy: a comprehensive overview of bee morphology and physiology. JSR-B. 2023;:1–19.
MLA Halvacı, Ebru et al. “Bee Anatomy: A Comprehensive Overview of Bee Morphology and Physiology”. Journal of Scientific Reports-B, no. 008, 2023, pp. 1-19.
Vancouver Halvacı E, Kozak T, Gül M, Kars H, Şen F. Bee anatomy: a comprehensive overview of bee morphology and physiology. JSR-B. 2023(008):1-19.