Research Article
BibTex RIS Cite

Tek Fazlı Z-Kaynaklı Matris Dönüştürücü Modellenmesi ve Simülasyonu

Year 2023, Volume: 9 Issue: 1, 147 - 156, 30.06.2023
https://doi.org/10.29132/ijpas.1233654

Abstract

Bu makalede, değişken bir çıkış gerilimi ve kademeli olarak değişen bir çıkış frekansı elde etmek için tek fazlı matris dönüştürücü ile birlikte Z-kaynak ağı kullanılan bir alternatif akım-alternatif akım (AA-AA) dönüştürücü yapısı incelenmiştir. Bu dönüştürücü yapısında, çıkış gerilimi ve frekansı hem düşürülebilmekte hem de yükseltilebilmektedir. Matris dönüştürücü, doğrudan AA-AA dönüşüm yaparken anahtarlama stratejisi ile çıkış frekansını kademeli olarak değiştirme imkânı sağlamaktadır. Ayrıca, doğrudan AA-AA dönüştürme özelliği sayesinde, geleneksel dönüştürücülerde kullanılan büyük bir DA bağlantı kondansatörüne olan ihtiyacı ortadan kaldırmıştır. Böylece sistem hem daha az maliyetli hem de daha az karmaşık bir yapıya sahip olmaktadır. Bu çalışmada, çeşitli uygulamalarda farklı hız değerlerini elde etmek için kullanılan tek fazlı asenkron motoru sürmek için tek fazlı Z-kaynaklı matris dönüştürücü kullanılmıştır. Bu yapı, asenkron motorun başlatılmasında veya kademeli bir hıza ihtiyaç duyan asenkron motorun hız kontrolünde kullanılabilmektedir. Tek fazlı Z-kaynaklı matris dönüştürücü MATLAB/Simulink ortamında modellenerek simülasyonu yapılmış ve farklı frekans değerleri için simülasyon sonuçları hem direnç-bobin (RL) yükü için hem de tek fazlı asenkron motor için sunulmuştur. Dönüştürücü akım ve geriliminin harmonik spektrumu da incelenerek, harmonik bozulma değerleri farklı frekanslar için verilmiştir.

References

  • Alesina, A., & Venturini, M. G. (1989). Analysis and design of optimum-amplitude nine-switch direct AC-AC converters. IEEE Transactions on Power Electronics, 4(1), 101-112.
  • Belousov, A. S., Meshcheryakov, V. N., Valtchev, S., & Kryukov, O. V. (2021). Start and Reverse of Single-phase and Two-phase Induction Motors. 2021 3rd International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency (SUMMA) pp. 1135-1140.
  • Fang, X., & Liu, J. (2012). Single-Phase Voltage-Fed Z-Source Matrix Converter. Journal of International Conference on Electrical Machines and Systems 1(2), pp. 46-52.
  • Mousavi, S. M. J., Babaei, E., Alizadeh, D., & Komurcugil, H. (2021). Single‐phase AC‐AC Z‐source converter based on asymmetrical gamma structure with continuous input current and safe commutation strategy. IET Power Electronics, 14(3), 680-689.
  • Hosseini, S. H., & Babaei, E. (2001). A new generalized direct matrix converter. 2001 IEEE International Symposium on Industrial Electronics Proceedings Vol. 2, pp. 1071-1076.
  • Idris, Z., Hamzah, M. K., & Saidon, M. F. (2006). Implementation of single-phase matrix converter as a direct ac-ac converter with commutation strategies. 37th IEEE Power Electronics Specialists Conference, pp. 1-7.
  • Khoei, A., & Yuvarajan, S. (1988). Single-phase AC-AC converters using power MOSFETs. IEEE Transactions on Industrial Electronics, 35(3), 442-443.
  • Nguyen, M. K., Jung, Y. G., Lim, Y. C., & Kim, Y. M. (2009). A single-phase Z-source buck–boost matrix converter. IEEE Transactions on Power Electronics, 25(2), 453-462.
  • Pelly, B. R., & Gyugyi, L. (1976). Static Power Frequency Changers Theory, Performance, and Application John Wiley & Sons.
  • Rahman, A. (2019). Realization of single phase matrix converter using 4 controlled switches. International Journal of Engineering, Applied and Management Sciences Paradigms, 54(7), 1-4.
  • Endiz, M. S., & Akkkaya, R. (2020). A Novel Single Phase Modified Quasi-Z-Source Inverter Circuit Design and Analysis. 2020 24th International Conference Electronics (pp. 1-6).
  • Aleem, Z., Yang, H. K., Ahmed, H. F., Winberg, S. L., & Park, J. W. (2020). A class of single-phase Z-source AC–AC converters with magnetic coupling and safe-commutation strategy. IEEE Transactions on Industrial Electronics, 68(9), 8104-8115.
  • Hasan Babayi Nozadian, M., Babaei, E., Hosseini, S. H., & Shokati Asl, E. (2019). Switched Z‐source networks: a review. IET Power Electronics, 12(7), 1616-1633.
  • Flaxer, E. (2022). Principles, design and implementation of a direct AC-to-AC power converter—Regulated electronic transformer. Review of Scientific Instruments, 93(11), 114710.
  • Zin, M. F. M., Idris, A., Seroji, M. N., & Hamzah, N. (2012). AC-AC single phase matrix converter with harmonic filter and boost characteristics: A study. 2012 IEEE Student Conference on Research and Development (SCOReD) pp. 166-171.
  • Zuckerberger, A., Weinstock, D., & Alexandrovitz, A. (1997). Single-phase matrix converter. IEE Proceedings-Electric Power Applications, 144(4), 235-240.

Modelling and Simulation of Single Phase Z-Source Matrix Converter

Year 2023, Volume: 9 Issue: 1, 147 - 156, 30.06.2023
https://doi.org/10.29132/ijpas.1233654

Abstract

In this article, an alternating current-alternating current (AC-AC) converter structure using a single-phase matrix converter together with a Z-source network is examined to obtain a variable output voltage and a gradually varying output frequency. In this converter structure, the output voltage and frequency can be both reduced and increased. The matrix converter provides the opportunity to gradually change the output frequency with the switching strategy when performing direct AC-AC conversion. With this direct AC-to-AC conversion feature, it has eliminated the need for a large DC link capacitor used in conventional converters. Thus, the system is less costly and has a more compact structure. In this study, a single-phase Z-source matrix converter is used to drive a single-phase asynchronous motor, which is used to obtain different speed values in various applications. With this structure, it can be used to start an asynchronous motor or to control the speed of an asynchronous motor that needs a gradual speed. Single-phase Z-source matrix converter is modeled and simulated in MATLAB/Simulink environment and simulation results are given for different frequency values for both resistance-induktance (RL) load and single phase induction motor.

References

  • Alesina, A., & Venturini, M. G. (1989). Analysis and design of optimum-amplitude nine-switch direct AC-AC converters. IEEE Transactions on Power Electronics, 4(1), 101-112.
  • Belousov, A. S., Meshcheryakov, V. N., Valtchev, S., & Kryukov, O. V. (2021). Start and Reverse of Single-phase and Two-phase Induction Motors. 2021 3rd International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency (SUMMA) pp. 1135-1140.
  • Fang, X., & Liu, J. (2012). Single-Phase Voltage-Fed Z-Source Matrix Converter. Journal of International Conference on Electrical Machines and Systems 1(2), pp. 46-52.
  • Mousavi, S. M. J., Babaei, E., Alizadeh, D., & Komurcugil, H. (2021). Single‐phase AC‐AC Z‐source converter based on asymmetrical gamma structure with continuous input current and safe commutation strategy. IET Power Electronics, 14(3), 680-689.
  • Hosseini, S. H., & Babaei, E. (2001). A new generalized direct matrix converter. 2001 IEEE International Symposium on Industrial Electronics Proceedings Vol. 2, pp. 1071-1076.
  • Idris, Z., Hamzah, M. K., & Saidon, M. F. (2006). Implementation of single-phase matrix converter as a direct ac-ac converter with commutation strategies. 37th IEEE Power Electronics Specialists Conference, pp. 1-7.
  • Khoei, A., & Yuvarajan, S. (1988). Single-phase AC-AC converters using power MOSFETs. IEEE Transactions on Industrial Electronics, 35(3), 442-443.
  • Nguyen, M. K., Jung, Y. G., Lim, Y. C., & Kim, Y. M. (2009). A single-phase Z-source buck–boost matrix converter. IEEE Transactions on Power Electronics, 25(2), 453-462.
  • Pelly, B. R., & Gyugyi, L. (1976). Static Power Frequency Changers Theory, Performance, and Application John Wiley & Sons.
  • Rahman, A. (2019). Realization of single phase matrix converter using 4 controlled switches. International Journal of Engineering, Applied and Management Sciences Paradigms, 54(7), 1-4.
  • Endiz, M. S., & Akkkaya, R. (2020). A Novel Single Phase Modified Quasi-Z-Source Inverter Circuit Design and Analysis. 2020 24th International Conference Electronics (pp. 1-6).
  • Aleem, Z., Yang, H. K., Ahmed, H. F., Winberg, S. L., & Park, J. W. (2020). A class of single-phase Z-source AC–AC converters with magnetic coupling and safe-commutation strategy. IEEE Transactions on Industrial Electronics, 68(9), 8104-8115.
  • Hasan Babayi Nozadian, M., Babaei, E., Hosseini, S. H., & Shokati Asl, E. (2019). Switched Z‐source networks: a review. IET Power Electronics, 12(7), 1616-1633.
  • Flaxer, E. (2022). Principles, design and implementation of a direct AC-to-AC power converter—Regulated electronic transformer. Review of Scientific Instruments, 93(11), 114710.
  • Zin, M. F. M., Idris, A., Seroji, M. N., & Hamzah, N. (2012). AC-AC single phase matrix converter with harmonic filter and boost characteristics: A study. 2012 IEEE Student Conference on Research and Development (SCOReD) pp. 166-171.
  • Zuckerberger, A., Weinstock, D., & Alexandrovitz, A. (1997). Single-phase matrix converter. IEE Proceedings-Electric Power Applications, 144(4), 235-240.
There are 16 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Zeynep Bala Duranay 0000-0003-2212-5544

Hanifi Güldemir 0000-0003-0491-8348

Early Pub Date June 23, 2023
Publication Date June 30, 2023
Submission Date January 13, 2023
Acceptance Date May 26, 2023
Published in Issue Year 2023 Volume: 9 Issue: 1

Cite

APA Duranay, Z. B., & Güldemir, H. (2023). Tek Fazlı Z-Kaynaklı Matris Dönüştürücü Modellenmesi ve Simülasyonu. International Journal of Pure and Applied Sciences, 9(1), 147-156. https://doi.org/10.29132/ijpas.1233654
AMA Duranay ZB, Güldemir H. Tek Fazlı Z-Kaynaklı Matris Dönüştürücü Modellenmesi ve Simülasyonu. International Journal of Pure and Applied Sciences. June 2023;9(1):147-156. doi:10.29132/ijpas.1233654
Chicago Duranay, Zeynep Bala, and Hanifi Güldemir. “Tek Fazlı Z-Kaynaklı Matris Dönüştürücü Modellenmesi Ve Simülasyonu”. International Journal of Pure and Applied Sciences 9, no. 1 (June 2023): 147-56. https://doi.org/10.29132/ijpas.1233654.
EndNote Duranay ZB, Güldemir H (June 1, 2023) Tek Fazlı Z-Kaynaklı Matris Dönüştürücü Modellenmesi ve Simülasyonu. International Journal of Pure and Applied Sciences 9 1 147–156.
IEEE Z. B. Duranay and H. Güldemir, “Tek Fazlı Z-Kaynaklı Matris Dönüştürücü Modellenmesi ve Simülasyonu”, International Journal of Pure and Applied Sciences, vol. 9, no. 1, pp. 147–156, 2023, doi: 10.29132/ijpas.1233654.
ISNAD Duranay, Zeynep Bala - Güldemir, Hanifi. “Tek Fazlı Z-Kaynaklı Matris Dönüştürücü Modellenmesi Ve Simülasyonu”. International Journal of Pure and Applied Sciences 9/1 (June 2023), 147-156. https://doi.org/10.29132/ijpas.1233654.
JAMA Duranay ZB, Güldemir H. Tek Fazlı Z-Kaynaklı Matris Dönüştürücü Modellenmesi ve Simülasyonu. International Journal of Pure and Applied Sciences. 2023;9:147–156.
MLA Duranay, Zeynep Bala and Hanifi Güldemir. “Tek Fazlı Z-Kaynaklı Matris Dönüştürücü Modellenmesi Ve Simülasyonu”. International Journal of Pure and Applied Sciences, vol. 9, no. 1, 2023, pp. 147-56, doi:10.29132/ijpas.1233654.
Vancouver Duranay ZB, Güldemir H. Tek Fazlı Z-Kaynaklı Matris Dönüştürücü Modellenmesi ve Simülasyonu. International Journal of Pure and Applied Sciences. 2023;9(1):147-56.

154501544915448154471544615445