Research Article
BibTex RIS Cite
Year 2023, Volume: 4 Issue: 1, 33 - 40, 26.07.2023
https://doi.org/10.55147/efse.1278517

Abstract

References

  • Borjan, D., Leitgeb, M., Knez, Ž. & Hrnčič, M. K. (2020). Microbiological and antioxidant activity of phenolic compounds in olive leaf extract. Molecules. 25(24), 5946. doi:10.3390/molecules25245946 Chen, C. G., Nardi, A. N., Amadei, A. & D’Abramo, M. (2022). Theoretical modeling of redox potentials of biomolecules. Molecules, 27, 1077. doi:10.3390/molecules27031077
  • Ermurat, Y. (2013). Modeling the kinetics of pyrite ash biodesulfurization by Saccharomyces cerevisiae and Acetobacter aceti in liquid state bioreactors. Electronic Journal of Biotechnology, 16(2), 4-4. doi:10.2225/vol16-issue2-fulltext-1.
  • Krisch, J. & Szajáni, B. (1996). Effects of immobilization on biomass production and acetic acid fermentation of Acetobacter aceti as a function of temperature and pH. Biotechnology Letters, 18, 393–396. doi:10.1007/BF00143458
  • Krisch, J. & Szajani, B. (1997). Ethanol and acetic acid tolerance in free and immobilized cells of Saccharomyces cerevisiae and A. aceti. Biotechnology Letters, 19, 525–528. doi:10.1023/A:1018329118396
  • Markhali, F. S, Teixeira, J. A. & Rocha, C. M. R. (2020). Olive tree leaves—a source of valuable active compounds. Processes, 8, 1177. doi:10.3390/pr8091177
  • Neuer, B., Plagens, U. & Werner, D. (1983). Phosphodiester bonds between polypeptides and chromosomal DNA. Journal of Molecular Biology, 1642, 213-235. doi:10.1016/0022-28368390076-1
  • Ory, I., Romero, L. & Cantero, D. (1998). Modelling the kinetics of growth of Acetobacter aceti in discontinuous culture: influence of the temperature of operation. Applied Microbiology and Biotechnology, 49, 189–193. doi:0.1007/s002530051157
  • O'Sullivan, J. & Ettlinger, L. (1976). Characterization of the acetyl-CoA synthetase of Acetobacter aceti. Biochimica et Biophysica Acta BBA-Lipids and Lipid Metabolism. 4503, 410-417. doi:10.1016/0005-27607690014-X
  • Qabaha, K., AL-Rimawi, F., Qasem, A. & Naser, S. A. (2018). Oleuropein is responsible for the major anti-inflammatory effects of olive leaf extract. Journal of Medicinal Food, 302-305. doi:10.1089/jmf.2017.0070
  • Radak, B. K., Chipot, C., Suh, D., Jo, S., Jiang, W., Phillips, J. C., Schulten, K. & Roux, B. (2017). Constant-pH molecular dynamics simulations for large biomolecular systems. Journal of Chemical Theory and Computation, 1312, 5933–5944. doi:10.1021/acs.jctc.7b00875
  • Tarrant, M. K. & Cole, P. A. (2009). The chemical biology of protein phosphorylation. Annual Review of Biochemistry, 78, 797–825. doi:10.1146/annurev.biochem.78.070907.103047
  • Topuz, S. & Bayram, M. (2021). Oleuropein extraction from leaves of three olive varieties (Oleaeuropaea L.): Antioxidant and antimicrobial properties of purified oleuropein and oleuropein extracts. Journal of Food Processing and Preservation, e15697 doi:10.1111/jfpp.15697

Scholastic modeling of pH and redox potential changes in olive tree leaf alcohol and acids containing incubation media designed for the steady growth of Acetobacter aceti and Saccharomyces cerevisiae

Year 2023, Volume: 4 Issue: 1, 33 - 40, 26.07.2023
https://doi.org/10.55147/efse.1278517

Abstract

Modeling of pH and redox potential changes was investigated instructionally in incubation media designed for a stable growth of Acetobacter aceti and Saccharomyces cerevisiae. Olive tree leaf, phosphoric acid, vinegar, acetic acid and ethyl alcohol were used in incubation for extraction and symbiotic purposes. Structure imaging of olive tree leaf powder was performed using the Field Emission Gun – Scanning Electron Microscope (FEG-SEM). The incubation experiments were carried out at initially lowest pH and high temperatures of 30oC and 35oC for eight days in liquid state fermentation process. A steady A. aceti and S. cerevisiae growth was observed during the incubation. Increase in pH value displayed increase in redox potential in water+ phosphoric acid, vinegar+A. aceti+phosphoric acid, S. cerevisiae+A. aceti+acetic acid+phosphoric acid and S. cerevisiae+A. aceti+phosphoric acid solution processes at 30oC, and acetic acid+phosphoric acid and vinegar+phosphoric acid solution processes at 35oC. Decrease in pH value displayed decrease in redox potential in A. aceti+alcohol+phosphoric acid, vinegar+phosphoric acid, S. cerevisiae+A. aceti+acetic acid+phosphoric acid and S. cerevisiae+A. aceti+phosphoric acid solution processes at 30oC, and vinegar+A. aceti+phosphoric acid, S. cerevisiae+A. aceti+acetic acid+phosphoric acid and S. cerevisiae+A. aceti+phosphoric acid solution processes at 35 oC.

References

  • Borjan, D., Leitgeb, M., Knez, Ž. & Hrnčič, M. K. (2020). Microbiological and antioxidant activity of phenolic compounds in olive leaf extract. Molecules. 25(24), 5946. doi:10.3390/molecules25245946 Chen, C. G., Nardi, A. N., Amadei, A. & D’Abramo, M. (2022). Theoretical modeling of redox potentials of biomolecules. Molecules, 27, 1077. doi:10.3390/molecules27031077
  • Ermurat, Y. (2013). Modeling the kinetics of pyrite ash biodesulfurization by Saccharomyces cerevisiae and Acetobacter aceti in liquid state bioreactors. Electronic Journal of Biotechnology, 16(2), 4-4. doi:10.2225/vol16-issue2-fulltext-1.
  • Krisch, J. & Szajáni, B. (1996). Effects of immobilization on biomass production and acetic acid fermentation of Acetobacter aceti as a function of temperature and pH. Biotechnology Letters, 18, 393–396. doi:10.1007/BF00143458
  • Krisch, J. & Szajani, B. (1997). Ethanol and acetic acid tolerance in free and immobilized cells of Saccharomyces cerevisiae and A. aceti. Biotechnology Letters, 19, 525–528. doi:10.1023/A:1018329118396
  • Markhali, F. S, Teixeira, J. A. & Rocha, C. M. R. (2020). Olive tree leaves—a source of valuable active compounds. Processes, 8, 1177. doi:10.3390/pr8091177
  • Neuer, B., Plagens, U. & Werner, D. (1983). Phosphodiester bonds between polypeptides and chromosomal DNA. Journal of Molecular Biology, 1642, 213-235. doi:10.1016/0022-28368390076-1
  • Ory, I., Romero, L. & Cantero, D. (1998). Modelling the kinetics of growth of Acetobacter aceti in discontinuous culture: influence of the temperature of operation. Applied Microbiology and Biotechnology, 49, 189–193. doi:0.1007/s002530051157
  • O'Sullivan, J. & Ettlinger, L. (1976). Characterization of the acetyl-CoA synthetase of Acetobacter aceti. Biochimica et Biophysica Acta BBA-Lipids and Lipid Metabolism. 4503, 410-417. doi:10.1016/0005-27607690014-X
  • Qabaha, K., AL-Rimawi, F., Qasem, A. & Naser, S. A. (2018). Oleuropein is responsible for the major anti-inflammatory effects of olive leaf extract. Journal of Medicinal Food, 302-305. doi:10.1089/jmf.2017.0070
  • Radak, B. K., Chipot, C., Suh, D., Jo, S., Jiang, W., Phillips, J. C., Schulten, K. & Roux, B. (2017). Constant-pH molecular dynamics simulations for large biomolecular systems. Journal of Chemical Theory and Computation, 1312, 5933–5944. doi:10.1021/acs.jctc.7b00875
  • Tarrant, M. K. & Cole, P. A. (2009). The chemical biology of protein phosphorylation. Annual Review of Biochemistry, 78, 797–825. doi:10.1146/annurev.biochem.78.070907.103047
  • Topuz, S. & Bayram, M. (2021). Oleuropein extraction from leaves of three olive varieties (Oleaeuropaea L.): Antioxidant and antimicrobial properties of purified oleuropein and oleuropein extracts. Journal of Food Processing and Preservation, e15697 doi:10.1111/jfpp.15697
There are 12 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Research Articles
Authors

Yakup Ermurat 0000-0002-0159-5283

Early Pub Date July 26, 2023
Publication Date July 26, 2023
Submission Date April 6, 2023
Published in Issue Year 2023 Volume: 4 Issue: 1

Cite

APA Ermurat, Y. (2023). Scholastic modeling of pH and redox potential changes in olive tree leaf alcohol and acids containing incubation media designed for the steady growth of Acetobacter aceti and Saccharomyces cerevisiae. European Food Science and Engineering, 4(1), 33-40. https://doi.org/10.55147/efse.1278517