Research Article
BibTex RIS Cite

Endüstriyel atıksuların arıtımında yapay sulak alanların kullanımı

Year 2017, Volume: 8 Issue: 1, 213 - 226, 01.03.2017

Abstract

Yapay
sulak alanlar elli yılı aşkın süredir atık su arıtımı için kullanılmaktadır. Genellikle
evsel nitelikli atık suların arıtımında kullanılan yapay sulak alan sistemleri
son yirmi yıldır endüstriyel kaynaklı atık suların arıtımında da tercih
edilmektedir. Ayrıca, yapay sulak alanlar, çevre dostu bir teknoloji olması ve
düşük yatırım/işletim maliyeti nedeniyle kırsal bölge ve endüstrilerin
atıksularını arıtmak için pahalı geleneksel arıtma metotlarına alternatif bir
yöntemdir. Düşük enerji gereksinimi, kolay işletim ve bakım, maliyet
verimliliği, arazi estetiği, yeniden kullanım ve canlılara yaşam ortamı
oluşturması gibi pek çok avantaja sahip olan yapay sulak alanlar mühendislik
sistemleridir. Bitki filtre malzemesi, hidroloji ve mikrobiyal toplulukları
içermektedir. Akış türüne göre yüzeysel ve yüzey altı akışlı yapay sulak
alanlar olarak ikiye ayrılıp, yüzey alı akışlı sistemler ise yatay ve düşey
yüzey altı akışlı sistemler olarak alt gruba ayrılmaktadır. Farklı tip yapay
sulak alanların özel avantajlarından yararlanmak için hibrit sistemler olarak
birleştirilebilirler. Yapay sulak alan sistemlerinde fiziksel, kimyasal ve
biyolojik arıtım mekanizmaları birlikte gelişmektedir. Günümüzde özellikli
karaktere sahip endüstriyel atıksuların arıtımda başarı ile kullanılmaktadır.
Yapay sulak alanların endüstriyel atık su arıtımındaki ilk uygulamaları petrokimya,
mezbaha, et işleme, süt ve kağıt endüstrileri olup ardından tekstil, şarap,
sirke ve su ürünleri yetiştiriciliği endüstrileri izlemiştir.



Bu çalışma, serbest
yüzeyli, yüzey altı akışlı ve hibrit yapay sulak alan sistemlerinin çeşitli endüstriyel
atık suların arıtımındaki pilot ya da gerçek ölçekli çalışmaları ve farklı
ülkelerdeki uygulamaları ile ilgili bilgileri kapsamaktadır.

References

  • Abu Bakar, N.S., Mohd Nasir, N., Lananan, F., Abdul Hamid, S.H., Lam, S.S., Jusoh, A., (2015). Optimization of C/N rations for nutrient removal in aquaculture system culturing African catfish, (Clarias gariepinus) utilizing Bioflocs Technology, International Biodeterioration &Biodegradation, 102, 100-106.
  • Agustina, T.E., Ang, H.M., Pareek, V.K., (2008). Treatment of winery wastewater using a photocatalytic/photolytic reactor, Chem. Eng. J., 135, 151–156.
  • Ali, N., Mohammad, W., Jusoh, A., Hasan, M.R., Ghazal, N., Kamaruzaman, K., (2005). Treatment of aquaculture wastewater using ultra-low pressure asymmetric polyethersulfone (PES) membrane, Desalination, 185, 317-326.
  • Anastasiou, N., Monou, M., Mantzavinos, D., Kassinos, D., (2009). Monitoring of the quality of winery influents/effluents and polishing of partially treated wineryflows by homogenous Fe(II) photo-oxidation, Desalination, 248, 836–842.
  • Ávila, C., Reyes, C., Bayona, J.M., Garcia, J., (2013). Emerging organic contaminant rempval depending on primary treatment and operationa strategy in horizontal subsurface flow constructed wetlands: ınfluence of redox, Water Research, 47, 315-325.
  • Aydın Temel F., (2013). Türkiye’de atık su arıtımında yapay sulak alanların tasarımı ve potansiyelinin değerlendirilmesi: örnek çalışma, Kızılcaören, Doktora Tezi, OMÜ, Fen Bilimleri Enstitüsü, Samsun.
  • Ávila, C., Matamoros, V., Reyes-Contreras, C., Piña, B., Casado, M., Mita, L., Rivetti, C., Barata, C., García, J., Bayona, J. M. (2014). Attenuation of emerging organic contaminants in a hybrid constructed wetland system under different hydraulic loading rates and their associated toxicological effects in wastewater, Science of the Total Environment, 470–471, 1272–1280.
  • Berghein, A., Cripps, S.J., Liltved, H., (1998). A system for the treatment of sludge from land-based fish-farms, Aquatic Living Resources, 11, 4, 179-187.
  • Bulc, T.G. ve Ojstršek, A., (2008). The use of constructed wetland for dye-rich textile wastewater treatment, J. of Hazardous Materials, 155, 76-82.
  • Caixeta, C.E.T., Cammarota, M.C., Xavier, A.M.F., (2002). Slaughterhouse wastewater treatment: evaluation of a new three phase separation system in a UASB reactor, Bioresour. Technol., 81, 61–69.
  • Calheiros, C.S.C., Quitério, P.V.B., Silva, G., Crispim, L.F.C., Brix, H., Moura, S.C., Castro, P.M.L., (2012). Use of constructed wetland systems with Arundo and Sarcocornia for polishing high salinity tannery wastewater, J. Environ. Manege., 95, 66–71.
  • Chapple, M., Cooper, P., Cooper, D., Revitt, M., (2002). Pilot trials of a constructed wetland system for reducing the dissolved hydrocarbon in the runoff from a decommissioned refinery, Proceedings, 8th International Conference Wetland System for the Water Pollution Control, 877-883, Tanzania.
  • Chen, T.Y., Kao, C.M., Yeh, T.Y., Chien, H.Y., Chao, A.C., (2006). Application of constructed wetland for industrial wastewater treatment: A pilot-scale study, Chemosphere, 64, 497-502.
  • Chowdhury, P., Viraraghavan, T., Srinivasan, A., (2010). Biological treatment processes for fish processing wastewater-A review, Bioresource Technology, 101, 439-449.
  • Christen, E.W., Quayle, W.C., Marcoux, M.A., Arienzo ,M., Jayawardane, N.S., (2010). Winery wastewater treatment using the land filter technique, J. Environ. Manage. 91, 1665–1673.
  • Comino, E., Riggio, V., Rosso, M., (2011). Mountain cheese factory wastewater treatment with the use of a hybrid constructed wetland, Ecological Engineering, 37,1673–1680.
  • Coskun, T., Debik, E., Demir, N.M., (2010). Treatment of olive mill wastewaters by nanofiltration and reverse osmosis membranes, Desalination, 259, 65–70.
  • Dağlı, S., (2006). Evsel atıksulardan yapay sulak alan sistemleriyle fosfor gideriminin incelenmesi, Doktora Tezi, İTÜ, Fen Bilimleri Enstitüsü, İstanbul.
  • Davies, L.C., Carias, C.C., Novais, J.M., Martins-Dias, S., (2005). Phytoremediation of textile effluents containing azo dye by using Phragmites australis in a vertical flow intermittent feding constructed wetland, Ecological Eng, 25,594-605.
  • Espinoza-Quiňones, F.R., Fornari, M.M.T., Módenes, A.N., Palácio, S.M., da Silva Jr., F.G., Szymanski, N., Kroumov, A.D., Trigueros, D.E.G., (2009). Pollutant removal from tannery effluent by electrocoagulation, Chem.Eng. J., 151, 59–65.
  • Demirörs, B., (2006). Çukurova bölgesinde yapay sulak alan teknolojisinin kırsal alanda kullanımının araştırılması, Yüksek Lisans Tezi, Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, Adana.
  • Fumi, M.D., Parodi, G., Parodi, E., Silva, A., Marchetti, R., (1995). Optimisation of long term activated-sludge treatment of winery wastewater, Bioresource Technology, 52, 45–51.
  • Gannoun, H., Bouallagui, H, Okbi, A., Sayadi, S., Hamdi, M., (2009). Mesophilic and thermophilic anaerobic digestion of biologically pretreated abattoir wastewaters in an upflow anaerobic filter, Journal of Hazardous Materials, 170, 1, 263–271.
  • Gasiunas, V., Strusevičius, Z., Strusevičiéne, M.S., (2005). Pollutant removal by horizontal subsurface flow constructed wetlands in Lithuania, J. Environ. Sci.Health, 40A, 1467–1478.
  • Gönüllü, T., (2004). Endüstriyel kirlenme kontrolü, Birsen Yayınevi, İstanbul.
  • Grismer, M.E., Shepherd, H.L., (2011). Plants in constructed wetlands help to treat agricultural processing wastewater, California Agric. 65, 73–79.
  • Güven, G., Perendeci, A., Tanyolaç, A., (2009). Electrochemical treatment of simulated beet sugar factory wastewater, Chem. Eng. J., 151, 149–159.
  • Herouvim, E., Akratos, C.S., Tekerlekopoulou, A., Vayenas, D.V., (2011). Treatment of olive mill wastewater in pilot-scale vertical flow constructed wetlands, Ecological Engineering, 37, 931–939.
  • Hihosa-Valsero, M., Matamoros, V., Sidrach-Cardona, R., Martin-Villacorta, J., Bécares, E., Bayona, J.M., (2010). Comprehensive assessment of the design configuration of cpnstructed wetlands for the removal of pharmaceuticals and personal case products from urban wastewaters, Water Research, 44, 3669-3678.
  • Huddleston, G.W., Gillepsie, W.B., Rodgers, J.H., (2000). Using constructed wetlands to treat biochemical oxygen demand and ammonia associated with a refinery effluent, Ecotoxicol. Environ. Saf., 45, 188–193.
  • Ji, G., Sun, T., Zhou, Q., Sui, Xin, Chang, S., Li, P., (2002). Constructed subsurface flow wetland for treating heavy oil-produced water of the Liaohe Oilfield in China, Ecological Engineering, 18, 459–465.
  • Ji, G.D., Sun, T.H., Ni, J.R., (2007). Surface flow constructed wetland for heavy-oil produced water treatment, Bioresource Technology, 98, 436-441.
  • Jiang, J.Q., Zhou, Z., Sharma, V.K., (2013). Occurrence, transportation, monitoring, and treatment of emerging micro-pollutant in wastewater-a review from global views, Microchemical Journal, 110, 292-300.
  • Justin, M.Z., Vrhovšek, D., Stuhlbacher, A., Bulc, T.G., (2009). Treatment of wastewater in hybrid constructed wetland from the production of vinegar and packaging of detergents, Desalination, 246, 100-109.
  • Kadlec, R.H., Wallence, S.D., (2009). Treatment wetlands, 2nd edition CRC Press, Boca Raton.
  • Kaldec, R.H., Knight, R.L., (1996). Treatment wetlands, CRC Press, Boca Raton.
  • Kaseva, M.E. ve Mbuligwe, S.E., (2010). Potential of constructed wetland systems for treating tannery industrial wastewater, Water Sci. Technol., 61, 4, 1043–1052.
  • Khan, S., Ahmad, I., Shah, M.T., Rehman, S., Khaliq, A., (2009). Use of cpnstructed wetland fort he removal of heavy metals from industrial wastewater, Journal of Environmental Management, 90, 3451-3457.
  • Kucuk, O.S., Sengul, F., Kapdan, I.K., (2003). Removal of ammonia from tannery effluents in a reed bed constructed wetland, Water Sci. Technol., 48, 11/12, 179–186.
  • Lee, E. R., (1999). Ser-Wet: A wetland simulation model to optimize NPS pollution control, Master of Science, Faculty of the Virginia Polytechnic Institute and State University, Blacksburg, VA.
  • Lefebre, O., Moletta, R., (2006). Treatment of organic pollution in industrial saline wastewater: a literature review, Water Res., 40, 3671–3682.
  • Lin, Y.F., Jing, S.R., Lee, D.Y., Chang, Y.F., Chen, Y.M., Shih, K.C., (2005). Performance of a constructed wetland treating intensive shrimp aquaculture wastewater under high hydraulic loading rate, Environmental Pollution, 134, 411-421.
  • Magmedov, V. G., Zakharchenko, M. A., Yakovleva, L. I., Ince, M. E., (1996). The use of constructed wetlands for the treatment of run-off and drainage waters: The UK and Ukraine experience, Water Science and Technology, 33, 4-5, 315-323.
  • Mbuligwe, S.E., (2005). Comparative treatment of dye-rich wastewater in engineerd wetlands (EWSs) vegetated with different plants, Water Research, 39, 2-3, 271-280.
  • Mannucci, A., Munz, G., Mori, G., Lubello, C., (2010). Anaerobic treatment of vegetable tannery wastewaters: a review, Desalination, 264, 1–8.
  • Mosteo, R., Ormad, P., Mozas, E., Sarasa, J., Ovelleiro, J.L., (2006). Factorial experimental design of winery wastewaters treatment by heterogenous photo-Fenton process, Water Research, 40, 1561–1568.
  • Munz, G., Gori, R., Cammilli, L., Lubello, C., (2008). Characterization of tannery wastewater and biomass in a membrane bioreactor using respirometric analysis, Bioresource Technology, 99, 8612–8618.
  • Murray-Gulde, C., Heatley, J.E., Karanfil, T., Rodger, J.H., Myers, J.E., (2003). Performance of a hybrid reverse osmosis-constructed wetland treatment system for brackish oil field produced water, Water Research, 37, 705-713.
  • Novotny, V. ve Olem, H., (1994). Water quality: prevention, identification and managemant of diffuse pollution, Van Nostrand Reinhold, New York.
  • OEMC, (2001). Treating wastewater with Constructed wetlands project final report, Governor’s Office of Energy Management and Conservation 225 E, 16th Avenue, Suite 650, Denver.
  • Ong, S.A, Uchiyama, K., Inadama, D., Ishida, Y., Yamagiwa, K., (2009). Phytoremediation of industrial effluent containing azo dye by model up-flow constructed wetland, Chinese Chemical Letters, 20, 225-228.
  • Ong, S.A, Uchiyama, K., Inadama, D., Ishida, Y., Yamagiwa, K., (2010). Treatment of azo dye Azid Orange 7 containing wastewater using up-flow constructed wetland with and without supplementary aeration, Bioresource Technology, 101, 9049-9057.
  • Othman, S.R.B., (2007). Landfill leachate treatment using free water surface constructed wetlands, Master of Engineering, Faculty of Civil Engineering, University of Technology, Malaysia.
  • Özen, Ö., (2006). S.Ü. kampüsü atıksularının ekilmiş sulak alanda Miscanthus X Giganteus ile arıtımı ve bitkinin hasat sonrasında adsorban özelliği, Yüksek Lisans Tezi, Selçuk Üniversitesi, Fen Bilimleri Enstitüsü, Konya.
  • Park, N., Vanderford, B.J., Snyder, S.A., Sarp, S., Kim, S.D., Cho, J., (2009). Effective controls of micropollutants included in wastewater effluent using constructed wetlands under anoxic condition, Ecological Engineering, 35, 418-423.
  • Petrie, B., McAdam, E.J., Scrimshaw, M.D., Lester, J.N., Cartmell, E., (2013). Fate drugs during wastewater treatment, TrAc Trends in Analytical Chemistry, 49, 145-159.
  • Petruccioli, M., Cardoso Duarte, J., Eusebio, A., Federici, F., (2002). Aerobic treatment of winery wastewater using a jet-loop activated sludge reactor, Process Biochem., 37, 821–829.
  • Reed, S.C., Crites, R.W., Middlebrooks, E.J., (1995). Natural systems for waste management and treatment, Second Edition, McGraw-Hill, New York, USA.
  • Rousseau, D., (2005). Performance of constructed treatment wetlands: model-based evaluation and impact of operation and maintenance, PhD thesis, Ghent University, Ghent, Belgium.
  • Saraçoğlu, S., (2006). Eskikaraağaç köyü evsel atıksularının dip akışlı yapay sulak alan arıtma yöntemiyle arıtılması, Yüksek Lisans Tezi, Uludağ Üniversitesi, Fen Bilimleri Enstitüsü, Bursa.
  • Serrano, L., De la Varga, D., Ruiz, I., Soto, M., (2011). Winery wastewater treatment in a hybrid constructed wetland, Ecological Engineering, 37, 744–753.
  • Shepherd, H.L., Grismer, M.E., Tchobanoglous, G., (2001). Treatment of high-strength winery wastewater using a subsurface-flow constructed wetland, Water Environ. Res., 73, 394–403.
  • Sindilariu, P.D., Wolter, C., Reiter, R., (2008). Constructed wetland as a treatment method for effluents from intensive trout farms, Aquaculture, 277, 179-184.
  • Sirianuntapiboon, S., Nimnu, N., (1999). Management of water consumption and wastewater of seafood processing industries in Thailand. Suranaree, J. Sci. Technol., 6, 3, 158–167.
  • Sohsalam, P., Englande, A.J., Sirianuntapiboon, S., (2008). Seafood wastewater treatment in cpnstructed wetland: Tropical case, Bioresource Technology, 99, 1218-1224.
  • Song, Z., Williams, C.J., Edyvean, R.G.J., (2004). Treatment of tannery wastewater by chemical coagulation, Desalination, 164, 249–259.
  • Søvik, A. K., Kløve, B., (2007). Emission of N2O and CH4 from a constructed wetland in southeastern Norway, Science of the Total Environment, 380, 28–37.
  • Suliman, F., Futsaether, C., Oxaal, U., Haugen, L.E., Jenssen, P., (2006). Effect of the inlet–outlet positions on the hydraulic performance of horizontal subsurface-flow wetlands constructed with heterogeneous porous media, Journal of Contaminant Hydrology, 87, 22-36.
  • USEPA, “Freewater surface wetlands for wastewater treatment: a technology assessment”, Office of Water, Washington, DC, EPA-832-S-99-002, 1999a.
  • USEPA, (2002). Onsite wastewater treatment systems manual, Office of Research and Development, Cincinati, OH.
  • USEPA, (1988). Constructed wetlands and aquatic plant systems for municipal wastewater treatment design manual, Center for Environmental Research Information Cincinnati, OH.
  • USEPA, USDA, NRCS (Natural Resources Conservation Service), (1995). Handbook of constructed wetlands, A guide to creating wetlands for: agricultural wastewater, domestic wastewater, coal mine drainage, storm water in the Mid-Atlantic Region, Washington, D.C., USA.
  • Uslu, M.O., Jasim, S., Arvai, A., Bewtra, J., Biswas, N., (2013). A survey of occurrence and risk assessment of pharmaceutical substances in the Great Lakes Basin, Ozone Science & Engineering, 35, 249-262.
  • Ün, Ü.T., Altay, U., Koparal, A.S., Öğütveren, B.Ü., (2008). Complete treatment of olive mill wastewaters by electrooxidation, Chem. Eng. J., 139, 445-452.
  • Ün, Ü.T., Uğur, S., Koparal, A.S., Öğütveren, B.Ü., (2006). Electrocoagulation of olive mill wastewaters, Sep. Purif. Technol., 52, 136-141.
  • Vymazal, J., Introduction. In: Vymazal, J., H. Brix, P.F. Cooper, M.B. Green and R. Haberl (eds). (1998). Constructed wetlands for wastewater treatment in Europe, Backhuys Publishers, Leiden.
  • Vymazal, J., (2005). Horizontal sub-surface flow and hybrid constructed wetlands systems for wastewater treatment, Ecological Engineering, 25, 5, 478-490.
  • Vymazal, J., (2007). Removal of nutrients in various types of constructed wetlands, Science of The Total Environment, 380, 48-65.
  • Vymazal, J., (2008). Constructed wetlands, Surface Flow, In: Jørgensen, S.E., Fath, B.(eds.), Encyclopedia of Ecology, Vol. 1. Elsevier BV, Amsterdam, Netherlands, 765–776.
  • Vymazal, J., (2009). The use constructed wetlands with horizontal subsurface flow for various types of wastewater, Ecological Engineering, 35, 1-17.
  • Vymazal, J., (2014). Constructed wetlands for treatment of industrial wastewaters: A review, Ecological Engineering, 73, 724–751.
  • Zhang, J., Jetten, M.S.M., Kuschk, P., Ettwing, K.F., Yin, C., (2013). Removal of cytostatik drugs from aquatic environment: a review, Science of The Total Environment, 445-446, 281-298.
  • Zhang, S.Y., Zhou, Q.H., Xu, D., He, F., Cheng Shui, P., Liang, W., Du, C., Wu, Z.B., (2010). Vertical-flow constructed wetlands applied in a recirculating aquaculture system for channel catfish culture: effects on water quality and zooplankton, Polish J. of Environ. Stud., 19, 5, 1063-1070.
Year 2017, Volume: 8 Issue: 1, 213 - 226, 01.03.2017

Abstract

References

  • Abu Bakar, N.S., Mohd Nasir, N., Lananan, F., Abdul Hamid, S.H., Lam, S.S., Jusoh, A., (2015). Optimization of C/N rations for nutrient removal in aquaculture system culturing African catfish, (Clarias gariepinus) utilizing Bioflocs Technology, International Biodeterioration &Biodegradation, 102, 100-106.
  • Agustina, T.E., Ang, H.M., Pareek, V.K., (2008). Treatment of winery wastewater using a photocatalytic/photolytic reactor, Chem. Eng. J., 135, 151–156.
  • Ali, N., Mohammad, W., Jusoh, A., Hasan, M.R., Ghazal, N., Kamaruzaman, K., (2005). Treatment of aquaculture wastewater using ultra-low pressure asymmetric polyethersulfone (PES) membrane, Desalination, 185, 317-326.
  • Anastasiou, N., Monou, M., Mantzavinos, D., Kassinos, D., (2009). Monitoring of the quality of winery influents/effluents and polishing of partially treated wineryflows by homogenous Fe(II) photo-oxidation, Desalination, 248, 836–842.
  • Ávila, C., Reyes, C., Bayona, J.M., Garcia, J., (2013). Emerging organic contaminant rempval depending on primary treatment and operationa strategy in horizontal subsurface flow constructed wetlands: ınfluence of redox, Water Research, 47, 315-325.
  • Aydın Temel F., (2013). Türkiye’de atık su arıtımında yapay sulak alanların tasarımı ve potansiyelinin değerlendirilmesi: örnek çalışma, Kızılcaören, Doktora Tezi, OMÜ, Fen Bilimleri Enstitüsü, Samsun.
  • Ávila, C., Matamoros, V., Reyes-Contreras, C., Piña, B., Casado, M., Mita, L., Rivetti, C., Barata, C., García, J., Bayona, J. M. (2014). Attenuation of emerging organic contaminants in a hybrid constructed wetland system under different hydraulic loading rates and their associated toxicological effects in wastewater, Science of the Total Environment, 470–471, 1272–1280.
  • Berghein, A., Cripps, S.J., Liltved, H., (1998). A system for the treatment of sludge from land-based fish-farms, Aquatic Living Resources, 11, 4, 179-187.
  • Bulc, T.G. ve Ojstršek, A., (2008). The use of constructed wetland for dye-rich textile wastewater treatment, J. of Hazardous Materials, 155, 76-82.
  • Caixeta, C.E.T., Cammarota, M.C., Xavier, A.M.F., (2002). Slaughterhouse wastewater treatment: evaluation of a new three phase separation system in a UASB reactor, Bioresour. Technol., 81, 61–69.
  • Calheiros, C.S.C., Quitério, P.V.B., Silva, G., Crispim, L.F.C., Brix, H., Moura, S.C., Castro, P.M.L., (2012). Use of constructed wetland systems with Arundo and Sarcocornia for polishing high salinity tannery wastewater, J. Environ. Manege., 95, 66–71.
  • Chapple, M., Cooper, P., Cooper, D., Revitt, M., (2002). Pilot trials of a constructed wetland system for reducing the dissolved hydrocarbon in the runoff from a decommissioned refinery, Proceedings, 8th International Conference Wetland System for the Water Pollution Control, 877-883, Tanzania.
  • Chen, T.Y., Kao, C.M., Yeh, T.Y., Chien, H.Y., Chao, A.C., (2006). Application of constructed wetland for industrial wastewater treatment: A pilot-scale study, Chemosphere, 64, 497-502.
  • Chowdhury, P., Viraraghavan, T., Srinivasan, A., (2010). Biological treatment processes for fish processing wastewater-A review, Bioresource Technology, 101, 439-449.
  • Christen, E.W., Quayle, W.C., Marcoux, M.A., Arienzo ,M., Jayawardane, N.S., (2010). Winery wastewater treatment using the land filter technique, J. Environ. Manage. 91, 1665–1673.
  • Comino, E., Riggio, V., Rosso, M., (2011). Mountain cheese factory wastewater treatment with the use of a hybrid constructed wetland, Ecological Engineering, 37,1673–1680.
  • Coskun, T., Debik, E., Demir, N.M., (2010). Treatment of olive mill wastewaters by nanofiltration and reverse osmosis membranes, Desalination, 259, 65–70.
  • Dağlı, S., (2006). Evsel atıksulardan yapay sulak alan sistemleriyle fosfor gideriminin incelenmesi, Doktora Tezi, İTÜ, Fen Bilimleri Enstitüsü, İstanbul.
  • Davies, L.C., Carias, C.C., Novais, J.M., Martins-Dias, S., (2005). Phytoremediation of textile effluents containing azo dye by using Phragmites australis in a vertical flow intermittent feding constructed wetland, Ecological Eng, 25,594-605.
  • Espinoza-Quiňones, F.R., Fornari, M.M.T., Módenes, A.N., Palácio, S.M., da Silva Jr., F.G., Szymanski, N., Kroumov, A.D., Trigueros, D.E.G., (2009). Pollutant removal from tannery effluent by electrocoagulation, Chem.Eng. J., 151, 59–65.
  • Demirörs, B., (2006). Çukurova bölgesinde yapay sulak alan teknolojisinin kırsal alanda kullanımının araştırılması, Yüksek Lisans Tezi, Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, Adana.
  • Fumi, M.D., Parodi, G., Parodi, E., Silva, A., Marchetti, R., (1995). Optimisation of long term activated-sludge treatment of winery wastewater, Bioresource Technology, 52, 45–51.
  • Gannoun, H., Bouallagui, H, Okbi, A., Sayadi, S., Hamdi, M., (2009). Mesophilic and thermophilic anaerobic digestion of biologically pretreated abattoir wastewaters in an upflow anaerobic filter, Journal of Hazardous Materials, 170, 1, 263–271.
  • Gasiunas, V., Strusevičius, Z., Strusevičiéne, M.S., (2005). Pollutant removal by horizontal subsurface flow constructed wetlands in Lithuania, J. Environ. Sci.Health, 40A, 1467–1478.
  • Gönüllü, T., (2004). Endüstriyel kirlenme kontrolü, Birsen Yayınevi, İstanbul.
  • Grismer, M.E., Shepherd, H.L., (2011). Plants in constructed wetlands help to treat agricultural processing wastewater, California Agric. 65, 73–79.
  • Güven, G., Perendeci, A., Tanyolaç, A., (2009). Electrochemical treatment of simulated beet sugar factory wastewater, Chem. Eng. J., 151, 149–159.
  • Herouvim, E., Akratos, C.S., Tekerlekopoulou, A., Vayenas, D.V., (2011). Treatment of olive mill wastewater in pilot-scale vertical flow constructed wetlands, Ecological Engineering, 37, 931–939.
  • Hihosa-Valsero, M., Matamoros, V., Sidrach-Cardona, R., Martin-Villacorta, J., Bécares, E., Bayona, J.M., (2010). Comprehensive assessment of the design configuration of cpnstructed wetlands for the removal of pharmaceuticals and personal case products from urban wastewaters, Water Research, 44, 3669-3678.
  • Huddleston, G.W., Gillepsie, W.B., Rodgers, J.H., (2000). Using constructed wetlands to treat biochemical oxygen demand and ammonia associated with a refinery effluent, Ecotoxicol. Environ. Saf., 45, 188–193.
  • Ji, G., Sun, T., Zhou, Q., Sui, Xin, Chang, S., Li, P., (2002). Constructed subsurface flow wetland for treating heavy oil-produced water of the Liaohe Oilfield in China, Ecological Engineering, 18, 459–465.
  • Ji, G.D., Sun, T.H., Ni, J.R., (2007). Surface flow constructed wetland for heavy-oil produced water treatment, Bioresource Technology, 98, 436-441.
  • Jiang, J.Q., Zhou, Z., Sharma, V.K., (2013). Occurrence, transportation, monitoring, and treatment of emerging micro-pollutant in wastewater-a review from global views, Microchemical Journal, 110, 292-300.
  • Justin, M.Z., Vrhovšek, D., Stuhlbacher, A., Bulc, T.G., (2009). Treatment of wastewater in hybrid constructed wetland from the production of vinegar and packaging of detergents, Desalination, 246, 100-109.
  • Kadlec, R.H., Wallence, S.D., (2009). Treatment wetlands, 2nd edition CRC Press, Boca Raton.
  • Kaldec, R.H., Knight, R.L., (1996). Treatment wetlands, CRC Press, Boca Raton.
  • Kaseva, M.E. ve Mbuligwe, S.E., (2010). Potential of constructed wetland systems for treating tannery industrial wastewater, Water Sci. Technol., 61, 4, 1043–1052.
  • Khan, S., Ahmad, I., Shah, M.T., Rehman, S., Khaliq, A., (2009). Use of cpnstructed wetland fort he removal of heavy metals from industrial wastewater, Journal of Environmental Management, 90, 3451-3457.
  • Kucuk, O.S., Sengul, F., Kapdan, I.K., (2003). Removal of ammonia from tannery effluents in a reed bed constructed wetland, Water Sci. Technol., 48, 11/12, 179–186.
  • Lee, E. R., (1999). Ser-Wet: A wetland simulation model to optimize NPS pollution control, Master of Science, Faculty of the Virginia Polytechnic Institute and State University, Blacksburg, VA.
  • Lefebre, O., Moletta, R., (2006). Treatment of organic pollution in industrial saline wastewater: a literature review, Water Res., 40, 3671–3682.
  • Lin, Y.F., Jing, S.R., Lee, D.Y., Chang, Y.F., Chen, Y.M., Shih, K.C., (2005). Performance of a constructed wetland treating intensive shrimp aquaculture wastewater under high hydraulic loading rate, Environmental Pollution, 134, 411-421.
  • Magmedov, V. G., Zakharchenko, M. A., Yakovleva, L. I., Ince, M. E., (1996). The use of constructed wetlands for the treatment of run-off and drainage waters: The UK and Ukraine experience, Water Science and Technology, 33, 4-5, 315-323.
  • Mbuligwe, S.E., (2005). Comparative treatment of dye-rich wastewater in engineerd wetlands (EWSs) vegetated with different plants, Water Research, 39, 2-3, 271-280.
  • Mannucci, A., Munz, G., Mori, G., Lubello, C., (2010). Anaerobic treatment of vegetable tannery wastewaters: a review, Desalination, 264, 1–8.
  • Mosteo, R., Ormad, P., Mozas, E., Sarasa, J., Ovelleiro, J.L., (2006). Factorial experimental design of winery wastewaters treatment by heterogenous photo-Fenton process, Water Research, 40, 1561–1568.
  • Munz, G., Gori, R., Cammilli, L., Lubello, C., (2008). Characterization of tannery wastewater and biomass in a membrane bioreactor using respirometric analysis, Bioresource Technology, 99, 8612–8618.
  • Murray-Gulde, C., Heatley, J.E., Karanfil, T., Rodger, J.H., Myers, J.E., (2003). Performance of a hybrid reverse osmosis-constructed wetland treatment system for brackish oil field produced water, Water Research, 37, 705-713.
  • Novotny, V. ve Olem, H., (1994). Water quality: prevention, identification and managemant of diffuse pollution, Van Nostrand Reinhold, New York.
  • OEMC, (2001). Treating wastewater with Constructed wetlands project final report, Governor’s Office of Energy Management and Conservation 225 E, 16th Avenue, Suite 650, Denver.
  • Ong, S.A, Uchiyama, K., Inadama, D., Ishida, Y., Yamagiwa, K., (2009). Phytoremediation of industrial effluent containing azo dye by model up-flow constructed wetland, Chinese Chemical Letters, 20, 225-228.
  • Ong, S.A, Uchiyama, K., Inadama, D., Ishida, Y., Yamagiwa, K., (2010). Treatment of azo dye Azid Orange 7 containing wastewater using up-flow constructed wetland with and without supplementary aeration, Bioresource Technology, 101, 9049-9057.
  • Othman, S.R.B., (2007). Landfill leachate treatment using free water surface constructed wetlands, Master of Engineering, Faculty of Civil Engineering, University of Technology, Malaysia.
  • Özen, Ö., (2006). S.Ü. kampüsü atıksularının ekilmiş sulak alanda Miscanthus X Giganteus ile arıtımı ve bitkinin hasat sonrasında adsorban özelliği, Yüksek Lisans Tezi, Selçuk Üniversitesi, Fen Bilimleri Enstitüsü, Konya.
  • Park, N., Vanderford, B.J., Snyder, S.A., Sarp, S., Kim, S.D., Cho, J., (2009). Effective controls of micropollutants included in wastewater effluent using constructed wetlands under anoxic condition, Ecological Engineering, 35, 418-423.
  • Petrie, B., McAdam, E.J., Scrimshaw, M.D., Lester, J.N., Cartmell, E., (2013). Fate drugs during wastewater treatment, TrAc Trends in Analytical Chemistry, 49, 145-159.
  • Petruccioli, M., Cardoso Duarte, J., Eusebio, A., Federici, F., (2002). Aerobic treatment of winery wastewater using a jet-loop activated sludge reactor, Process Biochem., 37, 821–829.
  • Reed, S.C., Crites, R.W., Middlebrooks, E.J., (1995). Natural systems for waste management and treatment, Second Edition, McGraw-Hill, New York, USA.
  • Rousseau, D., (2005). Performance of constructed treatment wetlands: model-based evaluation and impact of operation and maintenance, PhD thesis, Ghent University, Ghent, Belgium.
  • Saraçoğlu, S., (2006). Eskikaraağaç köyü evsel atıksularının dip akışlı yapay sulak alan arıtma yöntemiyle arıtılması, Yüksek Lisans Tezi, Uludağ Üniversitesi, Fen Bilimleri Enstitüsü, Bursa.
  • Serrano, L., De la Varga, D., Ruiz, I., Soto, M., (2011). Winery wastewater treatment in a hybrid constructed wetland, Ecological Engineering, 37, 744–753.
  • Shepherd, H.L., Grismer, M.E., Tchobanoglous, G., (2001). Treatment of high-strength winery wastewater using a subsurface-flow constructed wetland, Water Environ. Res., 73, 394–403.
  • Sindilariu, P.D., Wolter, C., Reiter, R., (2008). Constructed wetland as a treatment method for effluents from intensive trout farms, Aquaculture, 277, 179-184.
  • Sirianuntapiboon, S., Nimnu, N., (1999). Management of water consumption and wastewater of seafood processing industries in Thailand. Suranaree, J. Sci. Technol., 6, 3, 158–167.
  • Sohsalam, P., Englande, A.J., Sirianuntapiboon, S., (2008). Seafood wastewater treatment in cpnstructed wetland: Tropical case, Bioresource Technology, 99, 1218-1224.
  • Song, Z., Williams, C.J., Edyvean, R.G.J., (2004). Treatment of tannery wastewater by chemical coagulation, Desalination, 164, 249–259.
  • Søvik, A. K., Kløve, B., (2007). Emission of N2O and CH4 from a constructed wetland in southeastern Norway, Science of the Total Environment, 380, 28–37.
  • Suliman, F., Futsaether, C., Oxaal, U., Haugen, L.E., Jenssen, P., (2006). Effect of the inlet–outlet positions on the hydraulic performance of horizontal subsurface-flow wetlands constructed with heterogeneous porous media, Journal of Contaminant Hydrology, 87, 22-36.
  • USEPA, “Freewater surface wetlands for wastewater treatment: a technology assessment”, Office of Water, Washington, DC, EPA-832-S-99-002, 1999a.
  • USEPA, (2002). Onsite wastewater treatment systems manual, Office of Research and Development, Cincinati, OH.
  • USEPA, (1988). Constructed wetlands and aquatic plant systems for municipal wastewater treatment design manual, Center for Environmental Research Information Cincinnati, OH.
  • USEPA, USDA, NRCS (Natural Resources Conservation Service), (1995). Handbook of constructed wetlands, A guide to creating wetlands for: agricultural wastewater, domestic wastewater, coal mine drainage, storm water in the Mid-Atlantic Region, Washington, D.C., USA.
  • Uslu, M.O., Jasim, S., Arvai, A., Bewtra, J., Biswas, N., (2013). A survey of occurrence and risk assessment of pharmaceutical substances in the Great Lakes Basin, Ozone Science & Engineering, 35, 249-262.
  • Ün, Ü.T., Altay, U., Koparal, A.S., Öğütveren, B.Ü., (2008). Complete treatment of olive mill wastewaters by electrooxidation, Chem. Eng. J., 139, 445-452.
  • Ün, Ü.T., Uğur, S., Koparal, A.S., Öğütveren, B.Ü., (2006). Electrocoagulation of olive mill wastewaters, Sep. Purif. Technol., 52, 136-141.
  • Vymazal, J., Introduction. In: Vymazal, J., H. Brix, P.F. Cooper, M.B. Green and R. Haberl (eds). (1998). Constructed wetlands for wastewater treatment in Europe, Backhuys Publishers, Leiden.
  • Vymazal, J., (2005). Horizontal sub-surface flow and hybrid constructed wetlands systems for wastewater treatment, Ecological Engineering, 25, 5, 478-490.
  • Vymazal, J., (2007). Removal of nutrients in various types of constructed wetlands, Science of The Total Environment, 380, 48-65.
  • Vymazal, J., (2008). Constructed wetlands, Surface Flow, In: Jørgensen, S.E., Fath, B.(eds.), Encyclopedia of Ecology, Vol. 1. Elsevier BV, Amsterdam, Netherlands, 765–776.
  • Vymazal, J., (2009). The use constructed wetlands with horizontal subsurface flow for various types of wastewater, Ecological Engineering, 35, 1-17.
  • Vymazal, J., (2014). Constructed wetlands for treatment of industrial wastewaters: A review, Ecological Engineering, 73, 724–751.
  • Zhang, J., Jetten, M.S.M., Kuschk, P., Ettwing, K.F., Yin, C., (2013). Removal of cytostatik drugs from aquatic environment: a review, Science of The Total Environment, 445-446, 281-298.
  • Zhang, S.Y., Zhou, Q.H., Xu, D., He, F., Cheng Shui, P., Liang, W., Du, C., Wu, Z.B., (2010). Vertical-flow constructed wetlands applied in a recirculating aquaculture system for channel catfish culture: effects on water quality and zooplankton, Polish J. of Environ. Stud., 19, 5, 1063-1070.
There are 83 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Funda Aydın Temel

Publication Date March 1, 2017
Submission Date April 15, 2016
Published in Issue Year 2017 Volume: 8 Issue: 1

Cite

IEEE F. Aydın Temel, “Endüstriyel atıksuların arıtımında yapay sulak alanların kullanımı”, DUJE, vol. 8, no. 1, pp. 213–226, 2017.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456