Research Article
BibTex RIS Cite

Investigation of the effect of chromium, boron, and boron carbide reinforcements on tribological properties in copper matrix hybrid composites

Year 2023, Volume: 8 Issue: 4, 144 - 151, 29.12.2023
https://doi.org/10.30728/boron.1358658

Abstract

In this study, a hybrid mixture was made by adding Chromium (Cr) (1%) in a fixed ratio by weight to pure copper (Cu) powder and Boron (1%, 2%, 3%) and Boron carbide (B4C) (1%, 2%, 3%) powders separately in certain ratios. When the literature studies are examined, there are studies in which B4C and Cr powders were added to Cu powder separately. However, it was observed that a hybrid mixture was not made as in this study. In this study, it was aimed to investigate the tribological effects of the specific properties of three different reinforcing elements on Cu matrix material. Powder metallurgy production parameters were utilized to mix Cu powder with Cr, B and B4C powders. The prepared hybrid composites were tested for microstructure (XRD, SEM and EDX), hardness and wear at constant sliding distance under dry conditions. Weight loss plots and coefficient of friction values were generated for each composite sample. After the wear tests, the wear marks on the wear surfaces were analyzed by SEM analysis. As a result of hardness and wear tests, the hybrid composite Cu-Cr-3B gave the best results, while the lowest result was seen in pure Cu composite. In Cu-Cr-3B composite, 32% better results were obtained in hardness value and 151% better results were obtained in wear weight compared to Cu composite. In the post-wear SEM images, it was seen that B and B4C particles increased the resistance on the wear surface. According to the results obtained in the study, B and B4C, which have an important place for our country, increased the tribological properties of Cu matrix composites and showed that the studies can continue with new hybrid mixtures.

References

  • [1] Liu, Q., He, X. B., Ren, S. B., Zhang, C., Ting Ting, L., & Qu, X. H. (2014). Thermophysical properties and microstructure of graphite flake/copper composites processed by electroless copper coating. Journal of Alloys and Compounds, 587, 255-259. https://doi.org/10.1016/j.jallcom.2013.09.207.
  • [2]. Tjong, S. C., & Ma, Z. Y. (2000). Microstructural and mechanical characteristics of in situ metal matrix composites. Materials Science and Engineering: R:Reports, 29(3-4), 49-113. https://doi.org/10.1016/S0927-796X(00)00024-3.
  • [3]. Xiaosong, J., Liu, W., Li, J., Shao, Z., & Zhu, D.(2015). Microstructures and mechanical properties of Cu/Ti3SiC2/C/MWCNTs composites prepared by vacuum hot-pressing sintering. Journal of Alloys and Compounds, 618, 700-706. https://doi.org/10.1016/j. jallcom.2014.08.221.
  • [4]. Yoo, S. J., Han, S. H., & Kim, W. J. (2013). A combination of ball milling and high-ratio differential speed Rolling for synthesizing carbon nanotube/copper composites. Carbon, 61, 487-500. https://doi.org/10.1016/j.carbon.2013.04.105.
  • [5]. Thankachan, T., & Prakash, K. S. (2017). Microstructural, mechanical and tribological behavior of aluminum nitride reinforced copper surface composites fabricated through friction stir processing route. Materials Science and Engineering: A, 688, 301-308. https://doi.org/10.1016/j.msea.2017.02.010.
  • [6]. Kumar Bhoi, N., Singh, H., & Pratap, S. (2020).Synthesis and characterization of zinc oxide reinforced aluminum metal matrix composite produced by microwave sintering. Journal of ComposiTE Materials, 54(24), 3625-3636. https://doi.org/10.1177/0021998320918646. [7]. Tandon, R., & Madan, D. (2014). Emerging applications using magnesium alloy powders: a feasibility study. In Alderman, M., Manuel, M.V., Hort, N., & Neelameggham, N.R. (Eds.). Magnesium Technology 2014 (pp. 21-25). Springer, Cham. https://doi.org/10.1007/978-3-319-48231-6_7.
  • [8]. Burke, P., Kipouros, Y. G., Judge, W. D., & Kipouros, G. J. (2019). Surprises and Pitfalls in the Development of Magnesium Powder Metallurgy Alloys. In Dobrzanski, L. A., Bamberger, M., & Totten, G. E. (Eds.). Magnesium and Its Alloys (pp. 337-373). CRC Press. https://doi. org/10.1201/9781351045476.
  • [9]. Weber, L., & Tavangar, R. (2007). On the influence of active element content on the thermal conductivity and thermal expansion of Cu-X (X=Cr, B) diamond composites. Scripta Materialia, 57(11), 988-991. https://doi.org/10.1016/j.scriptamat.2007.08.007.
  • [10]. Islak, S., Kır, D., & Buytoz, S. (2014). Effect of sintering temperature on electrical and microstructure properties of hot pressed Cu-TiC composites. Science of Sintering, 46(1), 15-21. https://doi.org/10.2298/SOS1401015I.
  • [11]. Zhang, D., He, X., Liu, Y., Bai, F., & Wang, J. (2021). The effect of in situ nano-sized particle content on the properties of TiCx/Cu composites. Journal of Materials Research and Technology, 10, 453-459. https://doi.org/10.1016/j.jmrt.2020.12.037.
  • [12]. Uzunsoy, D. (2010). Investigation of dry sliding wear properties of boron doped powder metallurgy 316L stainless steel. Materials & Design, 31(8), 3896-3900. https://doi.org/10.1016/j.matdes.2010.02.053.
  • [13]. Hsu, C. Y., Yeh, J. W., Chen, S. K., & Shun, T. T. (2004). Wear resistance and high-temperature compression strength of Fcc CuCoNiCrAl 0.5Fe alloy with boron addition. Metallurgical and Materials Transactions A, 35, 1465-1469. https://doi.org/10.1007/ s11661-004-0254-x.
  • [14]. Li, J., Gan, L., Liu, Y., Mateti, S., Lei, W., Chen, Y., & Yang, J. (2018). Boron nitride nanosheets reinforced waterborne polyurethane coatings for improving corrosion resistance and antifriction properties. European Polymer Journal, 104, 57-63. https://doi. org/10.1016/j.eurpolymj.2018.04.042.
  • [15]. Sreenivasa, R., & Mallur, S. B. (2021). Sliding wear behavior of Cu+ Sn+ Cr composites by Taguchi technique. Journal of Bio-and Tribo-Corrosion, 7, 1-8. https://doi.org/10.1007/s40735-020-00465-5.
  • [16]. Pham, V. T., Bui, H. T., Tran, B. T., Nguyen, V. T., Le, D. Q., Than, X. T., & Phan, N. M. (2011). The effect of sintering temperature on the mechanical properties of a Cu/CNT nanocomposite prepared via a powder metallurgy method. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2(1), 15006. https://doi.org/10.1088/2043-6262/2/1/015006.
  • [17]. Kumar, N., Bharti, A., Dixit, M., & Nigam, A. (2020). Effect of powder metallurgy process and its parameters on the mechanical and electrical properties of copper-based materials: Literature review. Powder Metallurgy and Metal Ceramics, 59, 401-410. https://doi.org/10.1007/
  • 18]. Sathiskumar, R., Murugan, N., Dinaharan, I., & Vijay, S. J. (2013). Characterization of boron carbide particulate reinforced in situ copper surface composites synthesized using friction stir processing. Materials Characterization, 84, 16-27. https://doi.org/10.1016/j.matchar.2013.07.001.
  • [19]. Balalan, Z., & Gulan, F. (2019). Microstructure and mechanical properties of Cu-B4C and CuAlB4C composites produced by hot pressing. Rare Metals, 38(12), 1169-1177. https://doi.org/10.1007/ s12598-019-01287-2.
  • [20]. Deepa, J. P., Resmi, V. G., Rajan, T. P. D., Pavithran, C., & Pai, B. C. (2011). Studies on the effect of processing parameters on electroless coating of copper on boron carbide particles. Transactions of the Indian Institute of Metals, 64, 47-51. https://doi.org/10.1007/s12666-011-0009-5.
  • [21]. Shah, F. U., Glavatskih, S., & Antzutkin, O. N. (2013). Boron in tribology: from borates to ionic liquids. Tribology Letters, 51, 281-301. https://doi.org/10.1007/s11249-013-0181-3.
  • [22]. Zuo, H., Wei, W., Yang, Z., Li, X., Ren, J., Xian, Y., … & Wu, G. (2021). Performance enhancement of carbon/copper composites based on boron doping. Journal of Alloys and Compounds, 876, 160213. https://doi.org/10.1016/j.jallcom.2021.160213.

Bakır matrisli hibrit kompozitlerde krom, bor ve bor karbür takviyelerinin tribolojik özelliklere etkisinin incelenmesi

Year 2023, Volume: 8 Issue: 4, 144 - 151, 29.12.2023
https://doi.org/10.30728/boron.1358658

Abstract

Bu çalışmada saf bakır (Cu) tozuna ağırlıkça sabit oranda Krom (Cr) (%1) ve ayrı olarak belirli oranlarda Bor (%1, %2, %3) ile Bor karbür (B4C) (%1, %2, %3) tozlarının eklenmesiyle hibrit bir karışım yapılmıştır. Literatür çalışmaları incelendiğinde Cu tozuna ayrı ayrı B4C ve Cr tozlarının ilave edildiği çalışmalar bulunmaktadır. Ancak bu çalışmada olduğu gibi hibrit bir karışım yapılmadığı görülmüştür. Bu çalışmada üç farklı takviye elemanının spesifik özelliklerinin Cu matris malzeme üzerindeki tribolojik etkilerinin araştırılması amaçlanmıştır. Cu tozunun Cr, B ve B4C tozları ile karıştırılmasında toz metalurjisi üretim parametrelerinden yararlanılmıştır. Hazırlanan hibrit kompozitlerin, mikroyapı (XRD, SEM ve EDX), sertlik ve kuru koşullar altında sabit kayma mesafesinde aşınma testleri gerçekleştirilmiştir. Her kompozit numune için ağırlık kaybı grafikleri ve sürtünme katsayısı değerleri oluşturuldu. Aşınma deneyleri sonrasında aşınma yüzeylerinde meydana gelen aşınma izleri SEM analizleri ile incelenmiştir. Sertlik ve aşınma testleri sonucunda en iyi sonuçları veren hibrit kompozit Cu-Cr-3B olurken, en düşük sonuç ise saf Cu kompozitinde görüldü. Cu-Cr-3B kompozitinde Cu kompozite göre sertlik değerinde %32, aşınma ağırlığında ise %151 oranında daha iyi sonuç elde edilmiştir. Aşınma sonrası SEM görüntülerinde, B ve B4C parçacıklarının aşınma yüzeyindeki direnci artırdığı görülmüştür. Çalışmada elde edilen sonuçlara göre ülkemiz için önemli bir yeri olan B ve B4C’nin Cu matrisli kompozitlerin tribolojik özelliklerini artırdığı ve çalışmaların yeni hibrit karışımlarla devam edebileceğini göstermiştir.

References

  • [1] Liu, Q., He, X. B., Ren, S. B., Zhang, C., Ting Ting, L., & Qu, X. H. (2014). Thermophysical properties and microstructure of graphite flake/copper composites processed by electroless copper coating. Journal of Alloys and Compounds, 587, 255-259. https://doi.org/10.1016/j.jallcom.2013.09.207.
  • [2]. Tjong, S. C., & Ma, Z. Y. (2000). Microstructural and mechanical characteristics of in situ metal matrix composites. Materials Science and Engineering: R:Reports, 29(3-4), 49-113. https://doi.org/10.1016/S0927-796X(00)00024-3.
  • [3]. Xiaosong, J., Liu, W., Li, J., Shao, Z., & Zhu, D.(2015). Microstructures and mechanical properties of Cu/Ti3SiC2/C/MWCNTs composites prepared by vacuum hot-pressing sintering. Journal of Alloys and Compounds, 618, 700-706. https://doi.org/10.1016/j. jallcom.2014.08.221.
  • [4]. Yoo, S. J., Han, S. H., & Kim, W. J. (2013). A combination of ball milling and high-ratio differential speed Rolling for synthesizing carbon nanotube/copper composites. Carbon, 61, 487-500. https://doi.org/10.1016/j.carbon.2013.04.105.
  • [5]. Thankachan, T., & Prakash, K. S. (2017). Microstructural, mechanical and tribological behavior of aluminum nitride reinforced copper surface composites fabricated through friction stir processing route. Materials Science and Engineering: A, 688, 301-308. https://doi.org/10.1016/j.msea.2017.02.010.
  • [6]. Kumar Bhoi, N., Singh, H., & Pratap, S. (2020).Synthesis and characterization of zinc oxide reinforced aluminum metal matrix composite produced by microwave sintering. Journal of ComposiTE Materials, 54(24), 3625-3636. https://doi.org/10.1177/0021998320918646. [7]. Tandon, R., & Madan, D. (2014). Emerging applications using magnesium alloy powders: a feasibility study. In Alderman, M., Manuel, M.V., Hort, N., & Neelameggham, N.R. (Eds.). Magnesium Technology 2014 (pp. 21-25). Springer, Cham. https://doi.org/10.1007/978-3-319-48231-6_7.
  • [8]. Burke, P., Kipouros, Y. G., Judge, W. D., & Kipouros, G. J. (2019). Surprises and Pitfalls in the Development of Magnesium Powder Metallurgy Alloys. In Dobrzanski, L. A., Bamberger, M., & Totten, G. E. (Eds.). Magnesium and Its Alloys (pp. 337-373). CRC Press. https://doi. org/10.1201/9781351045476.
  • [9]. Weber, L., & Tavangar, R. (2007). On the influence of active element content on the thermal conductivity and thermal expansion of Cu-X (X=Cr, B) diamond composites. Scripta Materialia, 57(11), 988-991. https://doi.org/10.1016/j.scriptamat.2007.08.007.
  • [10]. Islak, S., Kır, D., & Buytoz, S. (2014). Effect of sintering temperature on electrical and microstructure properties of hot pressed Cu-TiC composites. Science of Sintering, 46(1), 15-21. https://doi.org/10.2298/SOS1401015I.
  • [11]. Zhang, D., He, X., Liu, Y., Bai, F., & Wang, J. (2021). The effect of in situ nano-sized particle content on the properties of TiCx/Cu composites. Journal of Materials Research and Technology, 10, 453-459. https://doi.org/10.1016/j.jmrt.2020.12.037.
  • [12]. Uzunsoy, D. (2010). Investigation of dry sliding wear properties of boron doped powder metallurgy 316L stainless steel. Materials & Design, 31(8), 3896-3900. https://doi.org/10.1016/j.matdes.2010.02.053.
  • [13]. Hsu, C. Y., Yeh, J. W., Chen, S. K., & Shun, T. T. (2004). Wear resistance and high-temperature compression strength of Fcc CuCoNiCrAl 0.5Fe alloy with boron addition. Metallurgical and Materials Transactions A, 35, 1465-1469. https://doi.org/10.1007/ s11661-004-0254-x.
  • [14]. Li, J., Gan, L., Liu, Y., Mateti, S., Lei, W., Chen, Y., & Yang, J. (2018). Boron nitride nanosheets reinforced waterborne polyurethane coatings for improving corrosion resistance and antifriction properties. European Polymer Journal, 104, 57-63. https://doi. org/10.1016/j.eurpolymj.2018.04.042.
  • [15]. Sreenivasa, R., & Mallur, S. B. (2021). Sliding wear behavior of Cu+ Sn+ Cr composites by Taguchi technique. Journal of Bio-and Tribo-Corrosion, 7, 1-8. https://doi.org/10.1007/s40735-020-00465-5.
  • [16]. Pham, V. T., Bui, H. T., Tran, B. T., Nguyen, V. T., Le, D. Q., Than, X. T., & Phan, N. M. (2011). The effect of sintering temperature on the mechanical properties of a Cu/CNT nanocomposite prepared via a powder metallurgy method. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2(1), 15006. https://doi.org/10.1088/2043-6262/2/1/015006.
  • [17]. Kumar, N., Bharti, A., Dixit, M., & Nigam, A. (2020). Effect of powder metallurgy process and its parameters on the mechanical and electrical properties of copper-based materials: Literature review. Powder Metallurgy and Metal Ceramics, 59, 401-410. https://doi.org/10.1007/
  • 18]. Sathiskumar, R., Murugan, N., Dinaharan, I., & Vijay, S. J. (2013). Characterization of boron carbide particulate reinforced in situ copper surface composites synthesized using friction stir processing. Materials Characterization, 84, 16-27. https://doi.org/10.1016/j.matchar.2013.07.001.
  • [19]. Balalan, Z., & Gulan, F. (2019). Microstructure and mechanical properties of Cu-B4C and CuAlB4C composites produced by hot pressing. Rare Metals, 38(12), 1169-1177. https://doi.org/10.1007/ s12598-019-01287-2.
  • [20]. Deepa, J. P., Resmi, V. G., Rajan, T. P. D., Pavithran, C., & Pai, B. C. (2011). Studies on the effect of processing parameters on electroless coating of copper on boron carbide particles. Transactions of the Indian Institute of Metals, 64, 47-51. https://doi.org/10.1007/s12666-011-0009-5.
  • [21]. Shah, F. U., Glavatskih, S., & Antzutkin, O. N. (2013). Boron in tribology: from borates to ionic liquids. Tribology Letters, 51, 281-301. https://doi.org/10.1007/s11249-013-0181-3.
  • [22]. Zuo, H., Wei, W., Yang, Z., Li, X., Ren, J., Xian, Y., … & Wu, G. (2021). Performance enhancement of carbon/copper composites based on boron doping. Journal of Alloys and Compounds, 876, 160213. https://doi.org/10.1016/j.jallcom.2021.160213.
There are 21 citations in total.

Details

Primary Language Turkish
Subjects Materials Engineering (Other)
Journal Section Research Article
Authors

Merve Horlu 0000-0003-0775-2849

Cevher Kürşat Macit 0000-0003-0466-7788

Gamze İspirlioğlu Kara 0000-0001-9968-1739

Burak Tanyeri 0000-0002-3517-9755

Bünyamin Aksakal 0000-0003-4844-9387

Publication Date December 29, 2023
Acceptance Date October 9, 2023
Published in Issue Year 2023 Volume: 8 Issue: 4

Cite

APA Horlu, M., Macit, C. K., İspirlioğlu Kara, G., Tanyeri, B., et al. (2023). Bakır matrisli hibrit kompozitlerde krom, bor ve bor karbür takviyelerinin tribolojik özelliklere etkisinin incelenmesi. Journal of Boron, 8(4), 144-151. https://doi.org/10.30728/boron.1358658

© 2016 All Rights Reserved
TENMAK Boron Research Institute