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 Abstract  
In this article, we propose Kernel prediction in partially linear mixed models by using 

Henderson's method approach. We derive the Kernel estimator and the Kernel predictor via 

the mixed model equations (MMEs) of Henderson's that they give the best linear unbiased 

estimation (BLUE) of the fixed effects parameters and the nonparametric function 

computationally easier and the best linear unbiased prediction (BLUP) of the random effects 

parameters as by-products. Additionally, asymptotic property of the Kernel estimator is 

investigated. A Monte Carlo simulation study is supported to illustrate the performance of 

Kernel prediction in partially linear mixed models and then, we finalize the article with the 

help of conclusion and discussion part to summarize the findings. 
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1. Introduction  

The partially linear mixed models (PLMMs) can be viewed as a combination of the linear mixed models (LMMs) 

[1] and the partially linear models (PLMs) [2]. The PLMMs are popular in the analysis of correlated data 

including longitudinal and repeated measurement or clustered data over time by incorporating the between-

subject and within-subject variations in many clinical and biomedical studies in recent years. 

 

Let us consider the PLMMs 

 

𝑦𝑖 = 𝑋𝑖𝛽 + 𝑔(𝑇𝑖) + 𝑍𝑖𝑢𝑖 + 𝜀𝑖    𝑖 = 1, ⋯ , 𝑚                                                                                                                     (1) 

 

where 𝑦𝑖 is an 𝑛𝑖 × 1 vector of response variables measured on subject 𝑖, 𝛽 is a 𝑝 × 1 parameter vector of fixed 

effects, 𝑇𝑖 is a random variable defined on [0,1], the function 𝑔(. ) is unknown function from ℝ𝑑 to ℝ1, 𝑋𝑖 =
(𝑥𝑖1, ⋯ , 𝑥𝑖𝑝)𝑇, 𝑇𝑖 = (𝑡𝑖1, ⋯ , 𝑡𝑖𝑑)𝑇 and 𝑍𝑖 = (𝑧𝑖1, ⋯ , 𝑧𝑖𝑞)𝑇 are 𝑛𝑖 × 𝑝, 𝑛𝑖 × 𝑑 and 𝑛𝑖 × 𝑞 known fixed and 

random effects design matrices, respectively, 𝑢𝑖 random vector that the components of which are told random 

effects and 𝜀𝑖 is an 𝑛𝑖 × 1 random errors vector. 

 

The posits, 𝑢𝑖 ~
𝑖𝑖𝑑

𝑁𝑞(0, 𝐷) and 𝜀𝑖 ~
𝑖𝑖𝑑

𝑁𝑛𝑖
(0, 𝑊𝑖), 𝑖 = 1, ⋯ , 𝑚, where 𝑢𝑖 and 𝜀𝑖 are independent, 𝐷 and 𝑊𝑖 are 𝑞 × 𝑞 

and 𝑛𝑖 × 𝑛𝑖 known positive definite (pd) matrices are usually used. 

 

When 𝑋𝑖 's are observable and under the assumptions of model (1), the conditional distribution of 𝑦𝑖 given 𝑢𝑖 is 

𝑦𝑖|𝑢𝑖~𝑁(𝑋𝑖𝛽 + 𝑔(𝑇𝑖) + 𝑍𝑖𝑢𝑖, 𝑊𝑖). Defining the conditional expectations which are also known as the kernel 

regressions with bandwidth ℎ of 𝑦, 𝑋 and 𝑍 as 

 

ω𝑦(𝑇𝑖) = 𝐸(𝑦𝑖|𝑇𝑖) = ∑ ω𝑖𝑗(𝑡)𝑦𝑖

𝑛

𝑖=1
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ω𝑥(𝑇𝑖) = 𝐸(𝑋𝑖|𝑇𝑖) = ∑ ω𝑖𝑗(𝑡)𝑋𝑖

𝑛

𝑖=1

 

ω𝑧(𝑇𝑖) = 𝐸(𝑍𝑖|𝑇𝑖) = ∑ ω𝑖𝑗(𝑡)𝑍𝑖

𝑛

𝑖=1

 

 

where ω𝑖𝑗(𝑡) = 𝐾ℎ(𝑡𝑖𝑗 − 𝑡)/ ∑ ∑ 𝐾ℎ(𝑡𝑘𝑙 − 𝑡)𝑛𝑘
𝑙=1

𝑛
𝑘=1 , 𝐾ℎ(. ) = 𝐾ℎ(./ℎ) and 𝐾(. ) is a Kernel fuction, the last 

expression could be written as 

 

ω𝑦(𝑇𝑖) = ω𝑥(𝑇𝑖)𝛽 + ω𝑧(𝑇𝑖)𝑢𝑖 + 𝑔(𝑇𝑖).                                                                                                                            (2) 

 

Subtracting equation (2) from equation (1), it is obtained that 

 

𝑦𝑖 − ω𝑦(𝑇𝑖) = [𝑋𝑖 − ω
𝑥

(𝑇𝑖)]𝛽 + [𝑍𝑖 − ω
𝑧
(𝑇𝑖)]𝑢𝑖 + 𝜀𝑖                        

 

�̃�𝑖 = �̃�𝑖𝛽 + �̃�𝑖𝑢𝑖 + 𝜀𝑖.                                                                                                                                                             (3) 

 

Let �̃� = (�̃�1
𝑇 , ⋯ , �̃�𝑚

𝑇 )𝑇, �̃� = (�̃�1
𝑇 , ⋯ , �̃�𝑚

𝑇 )𝑇, �̃� =⊕𝑖=1
𝑚 �̃�𝑖, where ⊕ describes the direct sum, 𝑢 = (𝑢1

𝑇 , ⋯ , 𝑢𝑚
𝑇 )𝑇 

and 𝜀 = (𝜀1
𝑇 , ⋯ , 𝜀𝑚

𝑇 )𝑇. Then, equation (3) is obtained more compactly as 

 

�̃� = �̃�𝛽 + �̃�𝑢 + 𝜀                                                                                                                                                                    (4) 

 

which implies that 

 

[
𝑢
𝜀

] ~𝑁𝑞𝑚+𝑛 ([
0𝑞𝑚

0𝑛
] , [

𝔇 0
0 𝑊

])     

 

where 𝑛 = ∑ 𝑛𝑖
𝑚
𝑖=1 , 𝔇 = 𝐼𝑚 ⊗ 𝐷 and 𝑊 =⊕𝑖=1

𝑚 𝑊𝑖 by ⊗ indicating the Kronecker product. So, we derive 

�̃�~𝑁(�̃�𝛽, 𝑉) where 𝑉 = �̃�𝔇�̃�𝑇 + 𝑊 in model (4). 

 

There are the profile-kernel, backfitting, smoothing spline, penalized spline and local linear regression 

methodologies to estimate the nonparametric function in the PLMMs. Some of these methodologies were 

widespread for independent data, and some of them commonly used for correlated data. The asymptotic 

properties of profile-kernel estimators for the independent data were provided by [3], [4] and [5]. The bias 

problem of backfitting estimation was firstly discerned by [6]; see also [7] and [8]. Meanwhile, [8] demonstrated 

that the backfitting and kernel estimators share the same asymptotic behavior. [9] employed a semiparametric 

random intercept model (an extension of the PLMs) to examine the CD4 cell numbers in HIV seroconverters, 

where the nonparametric function is estimated by the backfitting method. [10] and [11] investigated PLMMs for 

longitudinal data and employed smoothing spline, while [12] and [13] employed the penalized spline to fit 

PLMMs. [14] characterized local linear regression in the framework of generalized PLMMs for longitudinal data. 

 

[15]'s study is an extension of [9]'s model. [15] think a more general class of LMMs that the nonparametric 

component is estimated by the profile-kernel and backfitting methodologies. They work a natural extension of 

the linear mixed and semiparametric models called semiparametric mixed effect (or semiparametric linear mixed) 

model (SMEM) that uses parametric fixed effects to present the covariate effects and an arbitrary smooth function 

to model the time effect to account for the within subject correlation using random effects and its asymptotic 

behavior. To further highlighting the superiority of the methodology upon the backfitting, a comparison is also 

accomplished. They bring to an end that the kernel methodology rakes to have smaller bias and variance than the 

backfitting, asymptotically. Additionally, they demonstrate their theoretical results with the analysis of CD4 data 

in HIV disease and a small simulation study. They indicate that the SMEM is more stable and efficient than the 

linear mixed and semiparametric models. However, since [15] are obtained the profile-kernel and backfitting 

estimators under marginal model, they exclude the effect of the random effects in SMEM. 
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The principal goal of this article is to obtain Kernel predictors in the PLMMs by using [16]'s MMEs products. 

The plan of the article as follows. In Section 2, we recommend the Kernel prediction with the help of Henderson's 

MMEs and then, its asymptotic behavior is derived. In Section 3, a Monte Carlo simulation study is ensured to 

designate the theoretical outcomes. The article is finalized some summary and conclusions in Section 4. 

 

2. Kernel Prediction in Partially Linear Mixed Models 

In this section, we suggest the Kernel prediction in PLMMs via [16]'s MMEs different from [15]'s marginal 

model. Thus, we produce not only the estimation of the fixed effects and the nonparametric function but also the 

prediction of the random effects. 

 

By following model (3) assumptions, 𝑢 and �̃� are jointly Gaussian distributed as 

 

[
𝑢
�̃�] ~𝑁 ([

0
�̃�𝛽

] , [ 𝔇 𝔇�̃�𝑇

�̃�𝔇 𝑉
])                                                                                                                                               (5) 

 

and then by using equation (5), the conditional distribution of �̃� given 𝑢 is �̃�|𝑢~𝑁(�̃�𝛽 + �̃�𝑢, 𝑊). 

 

Following [16], we obtain the joint density of �̃� and 𝑢 given by 

 

𝑓(�̃�, 𝑢) = 𝑓(�̃�|𝑢)𝑓(𝑢) 

              = (2𝜋)−(𝑛+𝑞𝑚)/2|𝑊|−1/2|𝔇|−1/2𝑒𝑥𝑝 {−
1

2
[(�̃� − �̃�𝛽 − �̃�𝑢)

𝑇
𝑊−1(�̃� − �̃�𝛽 − �̃�𝑢)

+ 𝑢𝑇𝔇−1𝑢]}                                                                                                                                               (6) 

 

where |. | designates a matrix determinate and the equations are similar to Henderson's MMEs. 

 

Equation (6) is rewritten by taking the log-joint distribution of 𝑓(�̃�, 𝑢)  

 

𝑙𝑜𝑔𝑓(�̃�, 𝑢) = 𝑙𝑜𝑔𝑓(�̃�|𝑢) + 𝑙𝑜𝑔𝑓(𝑢) 

                     = −
1

2
{(𝑛 + 𝑞𝑚)𝑙𝑜𝑔(2𝜋) + 𝑙𝑜𝑔|𝑊| + 𝑙𝑜𝑔|𝔇|

+ [(�̃� − �̃�𝛽 − �̃�𝑢)
𝑇

𝑊−1(�̃� − �̃�𝛽 − �̃�𝑢) + 𝑢𝑇𝔇−1𝑢]}.                                                                 (7) 

 

As the results of removing the fixed term, taking the log function into account and computing the partial 

derivatives of equation (7) in respond to the 𝛽 and 𝑢 to zero and using �̂�𝐾𝑒 and �̂�𝐾𝑝 to demonstrate the Kernel 

estimator (Ke) and the Kernel predictor (Kp), the solutions are given as 

 

�̃�𝑇𝑊−1(�̃� − �̃��̂�𝐾𝑒) − �̃�𝑇𝑊−1�̃��̂�𝐾𝑝 = 0                                                                                                                          (8) 

 

�̃�𝑇𝑊−1(�̃� − �̃��̂�𝐾𝑒) − �̃�𝑇𝑊−1�̃� + 𝔇−1)�̂�𝐾𝑝 = 0.                                                                                                          (9) 

 

Equations (8) and (9) are parallel to Henderson's MMEs obtained by [17] and [16], with a distinction that 

equations (8) and (9) are practiced to �̂�𝐾𝑒 and �̂�𝐾𝑝 where Henderson's MMEs are practiced to the best linear 

unbiased estimator (BLUE) and the best linear unbiased predictor (BLUP). 

 

Equations (8) and (9) can compactly be rewritten in matrix as 

 

(�̃�𝑇𝑊−1�̃� �̃�𝑇𝑊−1�̃�
�̃�𝑇𝑊−1�̃� �̃�𝑇𝑊−1�̃� + 𝔇−1) (

�̂�𝐾𝑒

�̂�𝐾𝑝
) = (

�̃�𝑇𝑊−1�̃�

�̃�𝑇𝑊−1�̃�
).                                                                                              (10) 

 

Using [18]'s approach, equation (10) can be written as 



Kuran, Yalaz / Cumhuriyet Sci. J., 41(3) (2020) 571-579 

 

574 

 

 

𝐶�̂� = 𝛾𝑇𝑊−1�̃�                                                                                                                                                                      (11) 
 

where �̂� = (�̂�𝐾𝑒
𝑇 , �̂�𝐾𝑝

𝑇 )𝑇, 𝛾 = (�̃�, �̃�) and 𝐶 =  𝛾𝑇𝑊−1 𝛾 + 𝔇∗+ with 𝔇∗ = [
𝐼𝑝 0

0 𝔇
] and 𝐺∗+ = [

𝐼𝑝 0

0 𝔇−1
] where 

the ‘+’ indicates the Moore–Penrose inverse. 

 

By resolving equation (11), the following equation is found as 

 

�̂� = 𝐶−1𝛾𝑇𝑊−1�̃�                                                                                                                                                                 (12) 

 

where 𝐶−1 is attained with the help of the inverse of the partitioned matrix (see [19]) as 

 

𝐶−1 = (
(�̃�𝑇𝑉−1�̃�)

−1
−(�̃�𝑇𝑉−1�̃�)

−1
�̃�𝑇𝑉−1�̃�𝔇

−𝔇�̃�𝑇𝑉−1�̃�(�̃�𝑇𝑉−1�̃�)
−1

(�̃�𝑇𝑊−1�̃� + 𝔇−1)−1 + 𝔇�̃�𝑇𝑉−1�̃�(�̃�𝑇𝑉−1�̃�)
−1

�̃�𝑇𝑉−1�̃�𝔇
). 

 

After algebraic simplifications and 𝐶−1 is replaced in equation (12), we suggest the Kernel estimator and the 

Kernel predictor, respectively, as 

 

�̂�𝐾𝑒 = (�̃�𝑇𝑉−1�̃�)
−1

�̃�𝑇𝑉−1�̃�                                                                                                                                             (13) 

 

�̂�𝐾𝑝 = 𝔇�̃�𝑇𝑉−1(�̃� − �̃��̂�𝐾𝑒).                                                                                                                                              (14) 

 

If 𝛽 were known, the estimator of 𝑔(𝑡) = 𝐸(𝑌 − 𝑋𝛽|𝑇 = 𝑡) can be defined as  

 

𝑔(𝑡) = ∑ ω𝑖𝑗(𝑡)(𝑦𝑖 − 𝑋𝑖�̂�𝐾𝑒)

𝑛

𝑖=1

.                                                                                                                                        (15) 

 

2.1. Asymptotic property of kernel estimator 

In this subsection, we will examine the asymptotic property of Kernel estimator. 

 

Theorem 2.1 Under the assumptions that the (𝑦𝑖 , 𝑋𝑖 , 𝑇𝑖) are independent and identically distributed (i.i.d) triplets, 

𝑔(𝑟)(. ) is the 𝑟th derivative of any function 𝑔(. ), 𝑣𝑘𝑙 is the (𝑘, 𝑙)th element of 𝑉−1, 𝑓𝑘(𝑡) is density of 𝑇𝑘, the 

Kernel density function 𝐾(. ) is assumed to has mean 0, unit variance, ℎ ∝ 𝑛−𝛼, 
1

5
≤ 𝛼 ≤

1

3
 and 𝑛 → ∞ are held, 

�̂� converges in distribution 

 

√𝑛 {�̂� − 𝛽 +
ℎ2𝑏1(𝛽, 𝑔)

2
} →⏞

𝐷

𝑁(0, 𝑉𝑘) 

 

where the bias term 𝑏1(𝛽, 𝑔) = 𝐴−1𝐸{�̃�𝑇𝑉−1𝑔(2)(𝑡)} and 𝑉𝑘 = 𝐴−1𝐸[(𝐽1 − 𝐽2)𝑇𝑉0(𝐽1 − 𝐽2)]𝐴−1 for 𝐴 =
lim
𝑛→∞

𝐴𝑛 = 𝐸(�̃�𝑇𝑉−1�̃�), 𝑉0 = 𝑉𝑎𝑟(𝑦|𝑥, 𝑡, 𝑧), 𝐽1 = 𝑉−1�̃�, 𝐽2 = [𝐽21, ⋯ , 𝐽2𝑛], where 𝐽2𝑖 = [𝐽2𝑖1, ⋯ , 𝐽2𝑖𝑛]𝑇 is 𝐽2𝑖𝑗 =

[∑ ∑ 𝐸(�̃�𝑘𝑉𝑘𝑙
|𝑡𝑙 = 𝑡𝑖𝑗)𝑓𝑗(𝑡𝑖𝑗)𝑛

𝑙=1
𝑛
𝑘=1

∑ 𝑓𝑙(𝑡𝑖𝑗)𝑛
𝑙=1

 for 𝜇0 = 𝐸(𝑦|𝑥, 𝑡, 𝑧). 

 

Proof. �̂�𝐾𝑒 is found as �̂�𝐾𝑒 = (�̃�𝑇𝑉−1�̃�)
−1

�̃�𝑇𝑉−1�̃� given by Eq. (13) where �̃� = 𝑋 − ω𝑥(𝑇). Then,  

 

√𝑛{�̂� − 𝛽} = √𝑛 [(∑ �̃�𝑖
𝑇

𝑉𝑖
−1

𝑛

𝑖=1

�̃�𝑖)

−1

(∑ �̃�𝑖
𝑇

𝑉𝑖
−1

𝑛

𝑖=1

�̃�𝑖) − 𝛽] 
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                     = [𝑛−1�̃�𝑖
𝑇

𝑉𝑖
−1�̃�𝑖]

−1
[√𝑛𝑛−1 ∑ �̃�𝑖

𝑇
𝑉𝑖

−1

𝑛

𝑖=1

(�̃�𝑖 − (�̃�𝑖𝛽 + �̃�(𝑡𝑖) + �̃�𝑖𝑢𝑖))] = 𝐴𝑛
−1(√𝑛ℭ𝑛) 

 

where 𝐴 = lim
𝑛→∞

𝐴𝑛 = 𝐸(�̃�𝑇𝑉−1�̃�), 

 

ℭ𝑛 = 𝑛−1 ∑ �̃�𝑖
𝑇

𝑉𝑖
−1

𝑛

𝑖=1

(𝑦𝑖 − (𝑋𝑖𝛽 + 𝑔(𝑡𝑖) + 𝑔(𝑡𝑖) − 𝑔(𝑡𝑖) + 𝑍𝑖𝑢𝑖)) 

      = 𝑛−1 ∑ �̃�𝑖
𝑇

𝑉𝑖
−1

𝑛

𝑖=1

(𝑦𝑖 − (𝑋𝑖𝛽 + 𝑔(𝑡𝑖) + 𝑍𝑖𝑢𝑖) − (𝑔(𝑡𝑖) − 𝑔(𝑡𝑖))) 

      = 𝑛−1 ∑ �̃�𝑖
𝑇

𝑉𝑖
−1

𝑛

𝑖=1

(𝑦𝑖 − 𝜇𝑖) − 𝑛−1 ∑ �̃�𝑖
𝑇

𝑉𝑖
−1

𝑛

𝑖=1

(𝑔(𝑡𝑖, 𝛽) − 𝑔(𝑡𝑖)) + 𝑂𝑝(1) = ℭ1𝑛 − ℭ2𝑛 + 𝑂𝑝(1) 

 

where 𝜇𝑖 = 𝑋𝑖𝛽 + 𝑔(𝑡𝑖) + 𝑍𝑖𝑢𝑖 and ℭ1𝑛 = 𝑛−1 ∑ �̃�𝑖
𝑇

𝑉𝑖
−1𝑛

𝑖=1 (𝑦𝑖 − 𝜇𝑖) = 𝑛−1 ∑ 𝐽1𝑖
𝑇𝑛

𝑖=1 (𝑦𝑖 − 𝜇𝑖) for 𝐽1𝑖 =

𝑉𝑖
−1�̃�𝑖 and ℭ2𝑛 = 𝑛−1 ∑ �̃�𝑖

𝑇
𝑉𝑖

−1𝑛
𝑖=1 (𝑔(𝑡𝑖, 𝛽) − 𝑔(𝑡𝑖)).  

 

Since the derivation of the asymptotic distribution of √𝑛ℭ1𝑛 is easy, we now think the asymptotic distribution of 

√𝑛ℭ2𝑛. By following [4], ℭ2𝑛 is found as ℭ2𝑛 = 𝑛−1 ∑ 𝐽21𝑖
𝑇𝑛

𝑖=1 (𝑦𝑖 − 𝜇𝑖) +
ℎ2

2
𝐸 (�̃�𝑖

𝑇
𝑉𝑖

−1𝑔(2)(𝑡)) + 𝑂𝑝(1) 

where 𝐽2𝑖 = [𝐽2𝑖1, ⋯ , 𝐽2𝑖𝑛]𝑇 for 𝐽2𝑖𝑗 =
[∑ ∑ 𝐸(�̃�𝑘𝑉𝑘𝑙

|𝑡𝑙 = 𝑡𝑖𝑗)𝑓𝑗(𝑡𝑖𝑗)𝑛
𝑙=1

𝑛
𝑘=1

∑ 𝑓𝑙(𝑡𝑖𝑗)𝑛
𝑙=1

 and 𝑣𝑘𝑙 is the (𝑘, 𝑙)th element of 𝑉−1, 

𝑓𝑘(𝑡) is density of 𝑇𝑘. Then, 

 

√𝑛{�̂� − 𝛽} = 𝐴−1𝑛−1/2 {∑(𝐽1𝑖 − 𝐽2𝑖)(𝑦𝑖 − 𝜇𝑖) +
(𝑛ℎ4)1/2

2

𝑛

𝑖=1

𝑏1(𝛽, 𝑔)} + 𝑂𝑝(1) 

 

where the bias term 𝑏1(𝛽, 𝑔) = 𝐴−1𝐸{�̃�𝑇𝑉−1𝑔(2)(𝑡)}. Equivalently, √𝑛 {�̂� − 𝛽 +
ℎ2𝑏1(𝛽,𝑔)

2
} →⏞

𝐷

𝑁(0, 𝑉𝑘) where 

𝑉𝑘 = 𝐴−1𝐸[(𝐽1 − 𝐽2)𝑇𝑉0(𝐽1 − 𝐽2)]𝐴−1 for 𝑉0 = 𝑉𝑎𝑟(𝑦|𝑥, 𝑡, 𝑧) and 𝜇0 = 𝐸(𝑦|𝑥, 𝑡, 𝑧). Thus, the proof of the 

Theorem 2.1 is completed. 

3. A Monte Carlo Simulation Study 

In this article, we will investigate a Monte Carlo simulation study to confront the performance of �̂�𝐾𝑒 and �̂�𝐾𝑝 in 

respect of the estimated mean square error (EMSE) and the predicted mean square error (PMSE), respectively. 

Then mean square error (MSE) of successful models which have minimum EMSE and PMSE values are 

calculated to demonstrate the best model. 

 

We get 𝑚 = 10, 30, 60 subjects and 𝑛𝑖 = 10 observations for every subject. By following [20], we choose 𝛽 =
(𝛽1, ⋯ , 𝛽𝑝)𝑇 as the normalized eigenvector corresponding to the largest eigenvalue of �̃�𝑇𝑉−1�̃� so that 𝛽𝑇𝛽 = 1. 

The 𝑥𝑖𝑗 covariates are generated from the standard normal distribution and 𝑡𝑖𝑗 is generated from uniform 

distribution (𝑈(0,1)). Then, the model is written for 𝑝 = 2 fixed effects and 𝑞 = 2 random effects as 

 

𝑦𝑖𝑗 = 𝛽1𝑥𝑖𝑗1 + 𝛽1𝑥𝑖𝑗2 + 𝑔(𝑡𝑖𝑗) + 𝑢1 + 𝑢2𝑡𝑖𝑚𝑒𝑖𝑗 + 𝜀𝑖,   𝑢𝑖 ~
𝑖𝑖𝑑

𝑁𝑞(0, 𝜎2𝐷),   𝜀𝑖 ~
𝑖𝑖𝑑

𝑁𝑛𝑖
(0, 𝜎2𝐼𝑛𝑖

),   𝑖 = 1, ⋯ , 𝑚 

 

where 𝐷 = [
1 𝜌
𝜌 1

] is the AR(1) process with 𝜌 = 0.30, 0.60, 0.90 and 𝑡𝑖𝑚𝑒𝑖𝑗 indicates the time which was given 

as the same set of occasions, {𝑡𝑖𝑚𝑒𝑖𝑗 = 𝑗 for 𝑖 = 1, ⋯ , 𝑚, 𝑗 = 1, ⋯ , 𝑛𝑖}. To simulate our results we thought both 

supersmooth and ordinary smooth functions. Hence we create 2 different functions 𝑔1 and 𝑔2 respectively given 
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as 𝑆(𝑡) = {
−1, 𝑡 < −1       

𝑡, 𝑡 ∈ [−1,1]
1, 𝑡 > 1         

 and 𝑒𝑟𝑓(𝑡) =
2

𝜋
∫ 𝑒−𝑠2

𝑑𝑠
𝑡

0
 while error function shows supersmooth function, 𝑆(𝑡) 

function shows ordinary smooth function. For kernel smoothing we use quartic kernel function 𝐾(𝑡) =
15

16
(1 − 𝑡2)2𝐼(|𝑡| ≤ 1) and ℎ𝑛

−1 = 1.2(ln 𝑛)0.25. 

 
Table 1. The estimated �̂�, �̂� and the real 𝛽, 𝑢 values 

 

Function 

 

 

Parameters 

𝑛 = 100  𝑛 = 300  𝑛 = 600 

𝜌 = 0.30 𝜌 = 0.60 𝜌 = 0.90  𝜌 = 0.30 𝜌 = 0.60 𝜌 = 0.90  𝜌 = 0.30 𝜌 = 0.60 𝜌 = 0.90 

Partially Linear Mixed Model     

𝑔1(𝑡) 𝛽1 -0.1383 

-0.2254* 

-0.1997 

-0.2258* 

-0.1779 

-0.2283* 

 0.5754 

0.6291* 

0.5554 

0.6229* 

0.5067 

0.6036* 

 0.8250 

0.7822* 

0.8497 

0.7954* 

0.7731 

0.7671* 

 𝛽2 -1.0411 

-0.9743* 

-1.0610 

-0.9742* 

-1.0884 

-0.9736* 

 -0.8416 

-0.7774* 

-0.7985 

-0.7823* 

-0.7444 

-0.7973* 

 -0.6570 

-0.6231* 

-0.6296 

-0.6060* 

-0.6635 

-0.6415* 

 𝑢1 -56.4091 

0.7973* 

-87.8467 

0.7973* 

-54.2041 

0.7973* 

 -0.0772 

0.9931* 

-0.1754 

0.9931* 

-0.0542 

0.9931* 

 -0.1229 

-2.3814* 

-0.1970 

-2.3814* 

-0.3093 

-2.3814* 

 𝑢2 -58.8106 

-0.3654* 

-88.1406 

-0.0287* 

-52.1021 

0.4413* 

 0.00496 

0.2255* 

0.1420 

0.5351* 

0.2580 

0.8607* 

 -0.3973 

-1.1995* 

-0.6017 

-1.8357* 

-0.7800 

-2.3649* 

𝑔2(𝑡) 𝛽1 -0.1444 

-0.2254* 

-0.1693 

-02258* 

-0.1764 

-0.2283* 

 0.5657 

0.6195* 

0.5373 

0.5968* 

0.5031 

0.6289* 

 0.7778 

0.7715* 

0.7937 

0.7806* 

0.7724 

0.7735* 

 𝛽2 -1.0363 

-0.9743* 

-1.0880 

-0.9742* 

-1.0700 

-0.9736* 

 -0.8335 

-0.7850* 

-0.7994 

-0.8024* 

-0.7533 

-0.7775* 

 -0.6752 

-0.6362* 

-0.6439 

-0.6251* 

-0.6585 

-0.6338* 

 𝑢1 -63.0259 

0.7973* 

-79.1291 

0.7973* 

-15.3698 

0.7973* 

 -0.0345 

0.9931* 

0.0026 

0.9931* 

-0.1398 

0.9931* 

 -0.1075 

-2.3814* 

0.0158 

-2.3814* 

-0.1465 

-2.3814*  

 𝑢2 -65.3904 

-0.3654* 

-79.4588 

-0.0287* 

-13.3486 

0.4413* 

 0.0556 

0.2255* 

0.1601 

0.5351* 

0.2464 

0.8607* 

 -0.4011 

-1.1995* 

-0.5902 

-1.8357* 

-0.7792 

-2.3649* 

Partially Linear Model     

𝑔1(𝑡) 𝛽1 -0.2087 

-0.2254* 

-0.2341 

-0.2258* 

-0.1724 

-0.2283* 

 0.5766 

0.6114*  

0.5346  

0.6298* 

0.5063  

0.6060* 

 0.8058  

0.7784* 

0.7752  

0.7566* 

0.7208  

0.7456* 

 𝛽2 -1.0755 
-0.9743* 

-1.0553 
-0.9742* 

-1.0845 
-0.9736* 

 -0.8228 
-0.7913*  

-0.8107  
-0.7767* 

-0.7385  
-0.7954* 

 -0.6601  
-0.6278* 

-0.7056  
-0.6539* 

-0.7395  
-0.6664* 

 𝑢1 -90.2572 

0.7973* 

-95.4439 

0.7973* 

-77.2981 

0.7973* 

 -0.1160  

0.9931* 

-0.0520  

0.9931* 

-0.1182  

0.9931* 

 -0.0695  

-2.3814* 

-0.1697  

-2.3814* 

-0.2989  

-2.3814* 

 𝑢2 -92.6514 
-0.3654* 

-95.7318 
-0.0287* 

-75.1554 
0.4413* 

 0.0450  
0.2255* 

0.1496  
0.5351* 

0.2557  
0.8607* 

 -0.3843  
-1.1995* 

-0.6070  
-1.8357* 

-0.8016  
-2.3649* 

𝑔2(𝑡) 𝛽1 -0.1541 

-0.2254* 

-0.1692 

-0.2258* 

-0.2404 

-0.2283* 

 0.5682  

0.6071* 

0.5542  

0.6203* 

0.5147  

0.6363* 

 0.7918  

0.7658* 

0.8142  

0.7953* 

0.6971  

0.7353* 

 𝛽2 -1.0571 
-0.9743* 

-1.0746 
-0.9742* 

-1.0626 
-0.9736* 

 -0.8326  
-0.7947* 

-0.8039  
-0.7843* 

-0.7587  
-0.7714* 

 -0.6698  
-0.6431* 

-0.6155  
-0.6062* 

-0.7268  
-0.6777* 

 𝑢1 -38.7551 

0.7973* 

-62.1012 

0.7973* 

-52.8449 

0.7973* 

 -0.0588  

0.9931* 

-0.1286  

0.9931* 

-0.1139  

0.9931* 

 -0.0553  

-2.3814* 

-0.0715  

-2.3814* 

-0.1227  

-2.3814* 

 𝑢2 -41.0706 
-0.3654* 

-62.3697 
-0.0287* 

-50.7557 
0.4413* 

 0.0548  
0.2255* 

0.1475  
0.5351* 

0.2480  
0.8607* 

 -0.3856  
-1.1995* 

-0.5977  
-1.8357* 

-0.7806  
-2.3649* 

Linear Mixed Model     

𝑔1(𝑡) 𝛽1 -0.1946 

-0.2254* 

-0.1908 

-0.2258* 

-0.2080 

-0.2283* 

 0.5691  

0.6167* 

0.5240  

0.6100* 

0.5144  

0.6275* 

 0.7811  

0.7675* 

0.7967  

0.7764* 

0.7921  

0.7786* 

 𝛽2 -1.1265 

-0.9743* 

-1.0509 

-0.9742* 

-1.0505 

-0.9736* 

 -0.8322  

-0.7872* 

-0.7817  

-0.7924* 

-0.7523  

-0.7581* 

 -0.6636  

-0.6410* 

-0.6746  

-0.6303* 

-0.6294  

-0.6276* 

 𝑢1 -71.1029 

0.7973* 

-78.1316 

0.7973* 

-33.6736 

0.7973* 

 -0.1175  

0.9931* 

-0.1044  

0.9931* 

-0.1270  

0.9931* 

 -0.0545  

-2.3814* 

-0.1857  

-2.3814* 

0.0943  

-2.3814* 

 𝑢2 -73.5222 

-0.3654* 

-78.4585 

-0.0287* 

-31.6024 

0.4413* 

 0.0490  

0.2255* 

0.1550  

0.5351* 

0.2521  

0.8607* 

 -0.3860  

-1.1995* 

-0.6089  

-1.8357* 

-0.7374  

-2.3649* 

𝑔2(𝑡) 𝛽1 -0.1385 
-0.2254* 

-0.1923 
-0.2258* 

-0.2115 
-0.2283* 

 0.5774  
0.6302* 

0.5551  
0.6138* 

0.5047  
0.6357* 

 0.7847  
0.7520* 

0.7872  
0.7719* 

0.7638  
0.7609* 

 𝛽2 -1.0250 

-0.9743* 

-1.0495 

-0.9742* 

-1.0657 

-0.9736* 

 -0.8485  

-0.7765* 

-0.8072  

-0.7995* 

-0.7500  

-0.7719* 

 -0.7276  

-0.6592* 

-0.6632  

-0.6357* 

-0.7011  

-0.6489* 

 𝑢1 -27.8043 
0.7973* 

-52.6802 
0.7973* 

-9.3439 
0.7973* 

 -0.1053  
0.9931* 

-0.0816  
0.9931* 

-0.0999 
0.9931* 

 -0.1330  
-2.3814* 

-0.1856  
-2.3814* 

-0.2027  
-2.3814* 

 𝑢2 -30.1215 

-0.3654* 

-52.9815 

-0.0287* 

-7.2430 

0.4413* 

 0.0509  

0.2255* 

0.1576  

0.5351* 

0.2511  

0.8607* 

 -0.3952  

-1.1995* 

-0.6185  

-1.8357* 

-0.7855  

-2.3649* 

* demonstrates the real values.     

 

 

The experiment is replicated 500 times by producing response variable. We compare our model with the partially 

linear models and the linear mixed models under the AR(1) process. The estimated �̂�, �̂� and the real 𝛽, 𝑢 values 

are compared in Table 1. 
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The EMSE for any estimator �̂� of 𝛽 and the PMSE for any predictor �̂� of 𝑢 are computed for each 𝑚, 𝑛𝑖, 𝜌, and 

500 replicated experiments, respectively, as 

 

𝐸𝑀𝑆𝐸(�̂�) =
1

500
∑ (�̂�(𝑟) − 𝛽)𝑇500

𝑟=1 (�̂�(𝑟) − 𝛽) and 𝑃𝑀𝑆𝐸(�̂�) =
1

500
∑ (�̂�(𝑟) − 𝑢)𝑇500

𝑟=1 (�̂�(𝑟) − 𝑢) 

 

where the subscript (𝑟) demonstrates to the 𝑟th replication and the performances are given in Table 2.  
 

Table 2. The EMSE and PMSE values 

 

Function 

 𝑛 = 300  𝑛 = 600 

 𝜌 = 0.30 𝜌 = 0.60 𝜌 = 0.90  𝜌 = 0.30 𝜌 = 0.60 𝜌 = 0.90 

 Partially Linear Mixed Model 

𝑔1(𝑡) EMSE 0.0081 0.0132 0.0298  0.0037 0.0045 0.0059 

 PMSE 1.1813 1.4730 1.3950  5.8783 6.5728 7.0004 

𝑔2(𝑡) EMSE 0.0093 0.0173 0.0293  0.0050 0.0054 0.0060 

 PMSE 1.1511 1.2358 1.7122  5.9866 7.3714 7.6027 

 Partially Linear Model 

𝑔1(𝑡) EMSE 0.0096 0.0141 0.0319  0.0039 0.0041 0.0093 

 PMSE 1.2036 1.2510 1.5556  6.0365 6.6212 7.0593 

𝑔2(𝑡) EMSE 0.0097 0.0127 0.0259  0.0043 0.0055 0.0105 

 PMSE 1.1737 1.3550 1.6076  6.2039 6.8727 7.8799 

 Linear Mixed Model 

𝑔1(𝑡) EMSE 0.0092 0.0198 0.0252  0.0052 0.0041 0.0066 

 PMSE 1.2895 1.3530 1.4792  6.2763 6.4763 8.9287 

𝑔2(𝑡) EMSE 0.0078 0.0132 0.0289  0.0039 0.0049 0.0054 

 PMSE 1.2951 1.3307 1.5378  5.8891 6.4500 7.4195 

 

Then to compare successful models we compute MSE values which are given in Table 3 using the following 

equation 

 

𝑀𝑆𝐸 =
1

500
∑(�̂�(𝑟) − 𝑦)

𝑇
500

𝑟=1

(�̂�(𝑟) − 𝑦). 

 

Table 3. MSE values of models 

 

Function 

𝑛 = 300  𝑛 = 600 

𝜌 = 0.30 𝜌 = 0.60 𝜌 = 0.90  𝜌 = 0.30 𝜌 = 0.60 𝜌 = 0.90 

Partially Linear Mixed Model 

𝑔1(𝑡) 0.8180 2.2366 6.6358  33.5532 76.8170 132.1835 

𝑔2(𝑡) 0.8920 3.0549 6.0778  33.1504 66.2158 120.4612 

Linear Mixed Model 

𝑔1(𝑡) 4.7880 9.5019 17.1337  55.4555 102.0681 170.6203 

𝑔2(𝑡) 4.5935 9.2114 16.8390  53.7372 101.2066 155.6432 

 

Table 2 and 3 are generated under 𝑛 = 300, 600 and 𝜌 = 0.30, 0.60, 0.90 conditions. Since the estimated �̂� 

values are influenced from small samples sizes (𝑛 = 100), the difference is arised between the estimated and the 

real values of 𝑢. And then, we have derived the EMSE, PMSE and MSE values for 𝑛 = 300, 600. 

 

We also investigate comparison between the finite sample and the asymptotic distributions of our estimator. In 

Figure 1 the ordinate is probability and the abscissa is 𝑍 = (𝑉𝑎𝑟 (𝑔(1, ℎ)))−1/2 (𝑔(1, ℎ) − 𝐸 (𝑔(1, ℎ))). The 

empirical c.d.f. of the estimator shown as a dashed line agrees very well with the normal c.d.f. shown as a solid 

line. 
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  𝒈𝟏  𝒈𝟐 

  𝒏 = 𝟑𝟎𝟎 𝒏 = 𝟔𝟎𝟎  𝒏 = 𝟑𝟎𝟎 𝒏 = 𝟔𝟎𝟎 

𝒇
(𝒛

) 

𝝆
= 𝟎. 𝟑𝟎 

  

 

  
𝝆
= 𝟎. 𝟔𝟎 

  

 

  
𝝆
= 𝟎. 𝟗𝟎 

  

 

  
  𝒁 = (𝑽𝒂𝒓 (�̂�(𝟏, 𝒉)))−𝟏/𝟐 (�̂�(𝟏, 𝒉) − 𝑬 (�̂�(𝟏, 𝒉))) 

Figure 1. Comparison of the finite sample and asymptotic distributions of the estimators of functions. 

 

4. Conclusion 

This article presents a new approach which is called as Henderson's method approach to obtain the kernel 

estimator and predictor at the same time in PLMM. After the kernel estimator and the kernel predictor are 

suggested, asymptotic normality of the proposed estimator is also derived. Then, a Monte Carlo simulation study 

is done to support the theoretical results in the article. 

 

The simulation study shows that the PLMMs have generally the best and the LMMs have the second best 

performances in resulting of having smaller EMSE and PMSE values. To compare the performances of the 

PLMMs and LMMs, we find their MSE values of the response variables. It is easily seen that PLMM has better 

MSE values which means that results show the superiority of the PLMMs when we think both estimators �̂� and 

 �̂� at the same time. We also investigate comparison between the finite sample and the asymptotic distributions 

of estimator 𝑔 of PLMM. This demonstrated that empirical c.d.f. of the estimator agrees very well with the normal 

c.d.f. 
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