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Abstract 

Aim of study: The power consumption of machining operations is an important part of the total 

production cost. Therefore, in this study, an artificial neural network (ANN) model was developed to model 

the effects of treatment, rotation speed, cutting depth, and feed rate on power consumption in the wood 

milling process.  

Material and methods: A multilayer feed-forward ANN was employed for the prediction of power 

consumption. The accuracy of the model was assessed by performance indicators such as MAPE, RMSE, 

and R². 

Main results: It has been observed that the ANN model yielded very satisfactory results with acceptable 

deviations. The MAPE, RMSE, and R2 values were obtained as 7.533, 0.027, and 0.9737 %, respectively, 

in the testing phase. Furthermore, it was found that power consumption decreased with decreasing of feed 

rate and cutting depth. 

Research highlights: The findings of this study can be used effectively in the forest industry to reduce 

the experimental time and costs. 
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Isıl İşlem Uygulanmış ve Uygulanmamış Odunun 

Frezelenmesinde Güç Tüketimini Azaltmak için Bir Yapay Sinir 

Ağı Modelinin Geliştirilmesi 

Öz 

Çalışmanın amacı: İşleme operasyonlarının güç tüketimi toplam üretim maliyetinin önemli bir 

parçasıdır. Bu nedenle, bu çalışmada odun frezeleme işleminde muamele, dönme hızı, kesme derinliği ve 

besleme hızının güç tüketimi üzerine olan etkilerini modellemek için bir yapay sinir ağı (YSA) modeli 

geliştirilmiştir. 

Materyal ve yöntem: İleri beslemeli çok katmanlı bir YSA güç tüketimini tahmin etmek için 

kullanılmıştır. Modelin doğruluğu, MAPE, RMSE ve R2 gibi performans göstergeleri aracılığıyla 

değerlendirilmiştir. 

Sonuçlar: YSA modelinin kabul edilebilir sapmalarla oldukça tatmin edici neticeler elde ettiği 

görülmüştür. MAPE, RMSE ve R2 değerleri, test aşamasında sırasıyla % 7.533, 0.027 ve 0.9737 olarak elde 

edilmiştir. Ayrıca, besleme hızının ve kesme derinliğinin azalması ile güç tüketiminin azaldığı 

bulunmuştur. 

Araştırma vurguları: Bu çalışmanın bulguları orman endüstrisinde deneysel zamanı ve maliyetleri 

azaltmak için etkili bir şekilde kullanılabilir. 

Anahtar kelimeler: Yapay Sinir Ağı, Frezeleme, Güç Tüketimi, Odun 
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Introduction 

Heat treatment is one of the modification 

methods used to improve the various 

properties of wood. Heat treatment of wood is 

an eco-friendly alternative method for wood 

preservation (Mazela, Zakrzewski, 

Grześkowiak, Cofta & Bartkowiak, 2004; 

Younsi, Kocaefe, Poncsak & Kocaefe, 2010). 

The heat treatment temperature generally 

varies from 120 °C to 250 °C, and the duration 

spans between 15 min and 24 h (Bakar, 

Hiziroglu & Tahir, 2013). Heating the wood 

at high temperatures reduces shrinking-

swelling characteristics, decreases 

equilibrium moisture content, and increases 

the weather resistance of a final product 

(Yildiz, Gezer & Yildiz, 2006; Kocaefe, Shi, 

Yang & Bouazara, 2008). Changes in the 

properties of wood affect the performance of 

machining processes. One of the factors that 

should be considered when evaluating the 

performance of machining processes is power 

consumption. 

The power consumption, often referred as 

the cutting power, represents the mechanical 

work at processing released per second (Ispas, 

Gurau, Campean, Hacibektasoglu & Racasan, 

2016). Reducing power consumption in wood 

machining increases energy efficiency and 

reduces operating costs. Therefore, 

determining the suitable combinations of 

parameters that affect power consumption in 

wood machining is necessary (Tiryaki, 

Malkoçoğlu & Özşahin, 2016). Milling is one 

of the wood machining processes. A large 

number of factors affect power consumption 

during the milling of wood. The most 

important main factors influencing the 

outcome are wood properties and milling 

parameters (Sedleckỳ & Gašparík 2017). 

Therefore, it is important to evaluate 

subfactors related to both wood properties and 

milling parameters for the reduction of power 

consumption in the wood milling process. 

In order to examine the influences of 

various factors on the power consumption of 

wood machining processes, many 

experimental studies have been conducted so 

far. Stewart (1974) claimed that power 

consumption increased with increasing of 

feed rate and cutting depth in planing. 

Aguilera and Martin (2001) reported that 

increased cutting depth led to higher power 

consumption. Rousek and Kopecký (2005) 

noted that the power increases proportionally 

with tool speed. Barcík, Kminiak, Řehák and 

Kvietková (2010) investigated the influences 

of cutting speed, rake angle, false heartwood, 

and feed rate on power consumption in the 

plain milling of beech wood. They noted that 

power consumption increases with increasing 

of feed rate and cutting speed. Salca (2015) 

reported that the best results were obtained 

with decreasing of feed rate. 

From the experimental studies conducted, 

it is clear that plenty of values for factors have 

to be investigated to detect a change in power 

consumption. However, conducting 

comprehensive experiments causes high costs 

and the loss of much time. Changes in power 

consumption can be described using data 

modeling methods. Hence, the number of tests 

required for investigating the influences of 

factors on power consumption can be 

decreased. Furthermore, the performance of 

machining processes can be evaluated by 

conducting less number of experimental 

investigations. One of the most popular 

modeling methods is the artificial neural 

network (ANN). The reason for its popularity 

lies in the fact that it can define complex and 

nonlinear relationships among variables 

without any prior knowledge of the handled 

problem (Rumbayan, Abudureyimu & 

Nagasaka, 2012; Ozsahin, 2013). 

The ANN approach plays a significant role 

in engineering applications. This approach has 

been widely employed in the field of wood 

science, for example in analyzing moisture in 

wood (Avramidis & Wu, 2007), predicting 

fracture toughness (Samarasinghe, Kulasiri & 

Jamieson, 2007), classifying veneer defects 

(Castellani & Rowlands, 2008), wood 

recognition (Khalid, Lee, Yusof & Nadaraj, 

2008), modeling of drying characteristics of 

wood (Ceylan, 2008), optimization of process 

parameters in oriented strand board 

manufacturing (Özşahin, 2012; Ozsahin, 

2013), modeling of some mechanical 

properties of wood and wood-based materials 

(Tiryaki & Hamzaçebi, 2014; Tiryaki, Aras, 

Kalaycıoglu, Erişir & Aydın, 2017a),  and 

modeling of some physical properties of heat-

treated wood (Ozsahin & Murat, 2018). 

However, the limited information is available 

on predicting the power consumption of wood 
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machining processes. Tiryaki et al. (2016) 

designed a neural network model to predict 

power consumption in wood planing. In 

another study, Tiryaki, Özşahin and Aydın 

(2017b) used ANNs to predict power 

consumption in the abrasive machining of 

wood. 

Consequently, the literature review has 

revealed that the ANN approach has been 

widely utilized to solve problems in many 

fields of wood science. However, this 

approach has not yet been employed to model 

the influences of treatment, rotation speed, 

cutting depth, and feed rate on power 

consumption in the machining of wood or 

wood-based materials. Therefore, the aim of 

the current study is to develop an ANN model 

for modeling the influences of the 

aforementioned parameters on power 

consumption in the wood milling process.  

Materials and Methods 

Experimental Procedure 

The data used in this study were taken from 

Ispas et al. (2016). Namely, the present study 

does not conduct the experiments for 

determining the influences of treatment, 

rotation speed, cutting depth, and feed rate on 

power consumption in the wood milling 

process. Instead, it aims at predicting the 

influences of the aforementioned variables on 

power consumption using the data obtained 

from the experimental results of Ispas et al. 

(2016). Some experimental details were 

explained below. 

Beech wood (Fagus sylvatica L.) was 

selected as the material of the experiments. A 

total of 60 samples of beech wood with 

dimensions of 400 mm×50 mm×28 mm were 

prepared for the experiments. Half of the 

samples were heat-treated at 200 °C for 2.5 h. 

The untreated and heat-treated samples were 

conditioned at 20 °C and 55% relative 

humidity for 4 weeks. The moisture content of 

the untreated samples was 8 ± 0.5% and that 

of the treated samples was 3 ± 0.2%. In the 

milling of the samples, two different levels of 

rotation speed (3300 and 4818 rpm), five 

different levels of feed rate (4.5, 9, 13.5, 18, 

and 22.5 m/min) and three different levels of 

cutting depth (1, 2, and 3 mm) were chosen as 

milling conditions. The samples were 

processed on the vertical milling machine type 

MNF10. The cutting power consumption was 

computed using Eq. (1). 

P =  Pt − 𝑃0   (1) 

In Eq. (1), P is the cutting power 

consumption (kW), Pt is the total power 

consumption (kW), and P0 is the power 

consumed by the device during the idle run 

(kW). A three-phase transducer was used to 

measure Pt and P0. 

Artificial Neural Networks 

ANNs are computational models inspired 

by structure or functional aspects of biological 

nervous systems (Chandwani, Agrawal & 

Nagar, 2015). The ANN approach offers 

many advantages over traditional statistical 

methods because it is capable of learning 

complicated and nonlinear relations among 

variables (Kiani Deh Kiani, Ghobadian, 

Tavakoli, Nikbakht & Najafi, 2010; Atici 

2011; Choudhury, Hosseinzadeh & Berndt, 

2012). ANNs can be utilized for many 

applications such as nonlinear function 

estimation, data sorting, pattern recognition, 

optimization, clustering, and simulation 

(Yadav and Chandel, 2014). 

The multilayer perceptron (MLP) is the 

most commonly used ANN type (Guresen, 

Kayakutlu & Daim, 2011). The MLP structure 

consists of one input layer, one output layer, 

and t intermediate (hidden) layers (Koçer, 

2010). The input layer takes data, the hidden 

layer(s) processes them, and the output layer 

displays the outputs of the network (Canakci, 

Özşahin &Varol, 2012). 

The layers of the MLP network consist of 

processing units (neurons). The neurons of a 

layer are linked to the neurons of neighboring 

layers with weights (Özşahin, 2012). An 

artificial neuron (j) gets input signals (xi), and 

then each input signal is multiplied by the 

connection weight (wij). The net input (netj) is 

obtained by the sum of the relevant bias (θj) 

and weighted signals. Outputs (yj) are 

calculated by applying a mathematical 

function (f(.)) to netj. This process is 

summarized in equations (2) and (3), and 

illustrated in Figure 1 (Ozsahin, 2013). 
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netj = ∑ xiwij

n

i=1

− θj                                (2) 
y

j
 =  𝑓(netj)                                              (3)

 

 
Figure 1. A schematic illustration of ANN 

 

The main phases of ANNs are training and 

testing. During the training process, inputs 

and outputs are presented to the network. An 

iterative algorithm adjusts the values of 

weights and biases of the network so that 

ANN outputs can be as close as possible to 

desired outputs. The adjusting operation is 

repeated until the maximum epoch is 

exceeded or the error falls below a determined 

value. Once the training of ANNs is 

completed, the trained model is tested using 

unseen data sets. If the model performance is 

high, the values of weights and biases are 

saved. These weights and biases can be 

employed to predict outputs for new input 

vectors (Yildirim, Özşahin & Akyüz, 2011). 

Determining the optimal network 

architecture is one of the main tasks. Input 

neurons and output neurons represent inputs 

and outputs, respectively. However, the 

number of hidden neurons is mostly detected 

by the trial-and-error method (Kalteh, 2013). 

If the number of hidden neurons is less than 

the optimal value, the network will be unable 

to learn complex relationships among 

variables. On the other hand, too many hidden 

neurons can lead to overfitting (Hamzehie, 

Fattahi, Najibi, Van der Bruggen & Mazinani, 

2015). It is hard to detect the most suitable 

network, even for a skilled user (Ma, Zeng, 

Tian, Sun & Zhou, 2012). 

 

 

 

Artificial Neural Networks Analysis 

In the present study, the effects of 

treatment, rotation speed, cutting depth, and 

feed rate on power consumption in the wood 

milling process were modeled via ANNs. The 

data (60 samples) were obtained from the 

experimental results of Ispas et al. (2016). The 

codes required for the ANN analysis were 

written in MATLAB.  

Within the model, four input variables 

were defined as treatment, rotation speed, 

cutting depth, and feed rate. Power 

consumption was considered as the output 

variable of the model. The data division 

process was carried out after determining the 

input and output variables. In this process, the 

available data are commonly partitioned into 

training, validation, and testing sets (Csábrági, 

Molnár, Tanos & Kovács, 2017). Therefore, 

the data set of this study was randomly 

divided into three sections containing training, 

validation, and testing sets comprised of 40 

(66.66% of the data), 10 (16.67% of the data), 

and 10 (16.67% of the data) samples, 

respectively. Different data groups were 

constituted, and each data group was tested to 

detect suitable data sets. Tables 13 show the 

data sets used in the ANN analysis. 

Normalizing the data before the training, 

validating, and testing of ANNs is 

recommended to equalize the significance of 

variables. In this study, all of the variables 

were mapped to the [-1 1] interval. With the 

help of a reverse normalizing process, the 
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model outputs were converted into the 

original values. The normalization was 

performed using equation (4). In this equation, 

Xnorm is the normalized value, X is the real 

value, and Xmin and Xmax are the minimum and 

maximum values of X, respectively. 

 

Xnorm = 2 ×
X − Xmin 

Xmax − Xmin

− 1                 (4) 

 

Table 1. Experimental data, predicted values, and percentage errors for the training set 

Treatment 
Rotation speed 

(rpm) 

Cutting depth 

(mm) 

Feed rate 

(m/min) 

Power consumption (kW) 

Actual Predicted Error (%) 

Untreated 3300 1 9 0.09 0.09 1.18 

Untreated 3300 1 13.5 0.17 0.18 -6.46 

Untreated 3300 1 18 0.27 0.25 8.62 

Untreated 3300 2 4.5 0.10 0.12 -20.07 

Untreated 3300 2 18 0.40 0.40 -0.89 

Untreated 3300 2 22.5 0.47 0.46 1.77 

Untreated 3300 3 4.5 0.18 0.18 -0.18 

Untreated 3300 3 9 0.24 0.25 -2.73 

Untreated 3300 3 13.5 0.43 0.42 1.73 

Untreated 3300 3 22.5 0.59 0.58 2.01 

Untreated 4818 1 4.5 0.09 0.08 5.56 

Untreated 4818 1 13.5 0.20 0.21 -6.59 

Untreated 4818 1 18 0.29 0.28 1.84 

Untreated 4818 1 22.5 0.35 0.35 1.12 

Untreated 4818 2 9 0.22 0.21 6.18 

Untreated 4818 2 13.5 0.36 0.36 -0.65 

Untreated 4818 2 18 0.45 0.44 1.90 

Untreated 4818 3 4.5 0.22 0.20 8.00 

Untreated 4818 3 9 0.25 0.27 -6.48 

Untreated 4818 3 22.5 0.59 0.60 -1.25 

Heat-Treated 3300 1 4.5 0.06 0.05 9.62 

Heat-Treated 3300 1 13.5 0.09 0.10 -16.25 

Heat-Treated 3300 1 18 0.14 0.14 -1.91 

Heat-Treated 3300 1 22.5 0.18 0.18 -1.12 

Heat-Treated 3300 2 4.5 0.10 0.11 -9.04 

Heat-Treated 3300 2 9 0.16 0.16 0.60 

Heat-Treated 3300 2 13.5 0.19 0.19 0.92 

Heat-Treated 3300 2 18 0.22 0.22 -1.34 

Heat-Treated 3300 3 13.5 0.24 0.25 -2.46 

Heat-Treated 3300 3 18 0.26 0.27 -4.67 

Heat-Treated 3300 3 22.5 0.30 0.31 -2.26 

Heat-Treated 4818 1 9 0.09 0.09 -1.71 

Heat-Treated 4818 1 18 0.15 0.14 3.43 

Heat-Treated 4818 1 22.5 0.18 0.18 -0.34 

Heat-Treated 4818 2 4.5 0.11 0.11 4.08 

Heat-Treated 4818 2 9 0.19 0.18 3.40 

Heat-Treated 4818 2 22.5 0.31 0.31 0.55 

Heat-Treated 4818 3 4.5 0.12 0.13 -10.03 

Heat-Treated 4818 3 9 0.24 0.24 -1.25 

Heat-Treated 4818 3 13.5 0.29 0.30 -2.84 
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Table 2. Experimental data, predicted values, and percentage errors for the validation set 

Treatment 
Rotation speed 

(rpm) 

Cutting depth 

(mm) 

Feed rate 

(m/min) 

Power consumption (kW) 

Actual Predicted Error (%) 

Untreated 3300 1 22.5 0.32 0.31 4.17 

Untreated 3300 2 9 0.23 0.20 15.05 

Untreated 3300 3 18 0.49 0.54 -9.46 

Untreated 4818 2 4.5 0.13 0.13 -1.05 

Untreated 4818 3 13.5 0.41 0.43 -3.73 

Heat-Treated 3300 1 9 0.08 0.08 1.12 

Heat-Treated 3300 3 4.5 0.12 0.13 -7.20 

Heat-Treated 4818 1 13.5 0.11 0.12 -7.63 

Heat-Treated 4818 2 18 0.30 0.27 10.25 

Heat-Treated 4818 3 22.5 0.44 0.39 11.94 

 

Table 3. Experimental data, predicted values, and percentage errors for the testing set 

Treatment 
Rotation speed 

(rpm) 

Cutting depth 

(mm) 

Feed rate 

(m/min) 

Power consumption (kW) 

Actual Predicted Error (%) 

Untreated 3300 1 4.5 0.06 0.07 -10.73 

Untreated 3300 2 13.5 0.32 0.33 -1.74 

Untreated 4818 1 9 0.13 0.12 10.14 

Untreated 4818 2 22.5 0.50 0.50 0.84 

Untreated 4818 3 18 0.49 0.56 -13.41 

Heat-Treated 3300 2 22.5 0.24 0.27 -12.14 

Heat-Treated 3300 3 9 0.20 0.22 -8.01 

Heat-Treated 4818 1 4.5 0.05 0.05 3.04 

Heat-Treated 4818 2 13.5 0.22 0.23 -5.90 

Heat-Treated 4818 3 18 0.38 0.34 9.38 

 

In modeling, a multilayer feed-forward 

ANN was employed. The activation functions 

were selected as the hyperbolic tangent 

sigmoid function and the linear transfer 

function. The training algorithm was the 

Levenberg-Marquardt algorithm. The 

gradient descent with a momentum back-

propagation algorithm was used as the 

learning rule. The performance function was 

the mean square error (MSE) [equation (5)]. 

 

MSE = 
1

N
∑ (ti − tdi)

2                             (5)

N

i=1

 

 

Here, ti is the real value, tdi is the model 

output, and N is the number of observations. 

The performance of each ANN model is 

strongly dependent on the devised structure of 

the network (Betiku & Taiwo 2015). The 

parameters such as the number of hidden 

layers and hidden neurons, transfer functions, 

and the training algorithm affect the 

performance of the network (Quan, Zou, 

Wang, Liu & Li, 2017). In this study, the 

optimum network parameters were detected 

by employing the trial-and-error approach. 

Different ANN structures and parameters 

were tried to minimize the difference between 

the measured and predicted outputs. As a 

result of the training period, the optimum 

values of weights and biases of the ANN 

model were obtained. The values of them can 

be seen from Table 4. 

 

Table 4. The optimum values of weights and biases 
Hidden layer 1 Hidden layer 2 Output layer 

Neuron 1 Neuron 2 Neuron 3 Bias 1 Neuron 1 Neuron 2 Neuron 3 Neuron 4 Bias 2 Neuron 1 Bias 3 

2.56496 0.11876 1.15039 -2.14499 1.83196 1.34668 0.37894 0.42338 -1.95351 -0.23066 -0.23554 

-0.45017 -0.02565 -0.10277 0.40495 1.79231 2.79025 0.79849 -2.45322 -0.36604 -0.43584 ‒ 

0.42144 -0.20710 -0.78664 1.81620 0.51177 1.22424 -1.15257 0.66680 2.12557 -0.34748 ‒ 

-0.58188 -0.15586 2.01293 ‒ ‒ ‒ ‒ ‒ 1.02449 1.01377 ‒ 
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The ANN model producing the nearest 

values to the experimental results was selected 

to make predictions. The network established 

in this study is composed of four layers and 

two of them are hidden layers.The input and 

outputlayers of the network consists of four 

and one neurons, respectively. The first 

hidden layer has three neurons and the second 

hidden layer has four neurons. The 

architecture of the proposed network is 

presented in Figure 2. 

 

Figure 2. The ANN architecture of the 

prediction model 

 

The validity of the prediction model was 

evaluated by employing the following 

indicators: the mean absolute percentage error 

(MAPE), the root mean square error (RMSE), 

and the coefficient of determination (R2). 

MAPE and RMSE demonstrate the degree of 

the deviation of predicted values from actual 

values. Therefore, the values of MAPE and 

RMSE must be as small as possible. The 

higher R2 implies a high similarity between 

actual values and ANN outputs. The MAPE, 

RMSE, and R2 values were computed using 

equations (6), (7), and (8), respectively. 

 

MAPE =  
1

N
(∑ [|

ti − tdi

ti
|]

N

i=1

) × 100   (6) 

 

RMSE = √
1

N
∑ (ti − tdi)

2

N

i=1

             (7) 

 

R2 = 1 −
∑ (ti − tdi)

2N
i=1

∑ (ti − t)̅
2N

i=1

             (8) 

 

where t ̅is the average of model outputs. 

 

 

Results and Discussion 

In this study, power consumption values 

were predicted by ANNs. The data were 

divided into three groups: (1) the training set 

to adjust the values of weights and biases, (2) 

the validation set to monitor model 

performance, and (3) the testing set to 

evaluate the generalization capability of the 

model. The number of hidden layers and their 

neurons was detected by comparing the 

performance of the tried networks. As a result 

of the analysis, an ANN structure containing 

three and four neurons in the hidden layers 

was chosen as the prediction model. 

The ANN model was trained, validated, 

and tested with the help of 60 data. Figure 3 

shows the error variation graphic of the 

chosen neural network. As seen in this figure, 

the performance function reached the 

minimum value (0.010442) at the end of 16 

epochs. 

 

 
Figure 3. Variations of the MSE 

 

The model results are given in Tables 1‒3. 

From these tables, it is possible to see that the 

outputs computed by employing the ANN 

model are very close to the actual outputs. 

The validity range of the developed model 

for the training, validation, and testing 

processes can be seen from Table 1, Table 2, 

and Table 3, respectively. As stated before, 

MAPE and RMSE were employed to compare 

the established models. A model giving the 

lower values of MAPE and RMSE should be 

selected to make predictions (Küçükönder, 

Boyacı & Akyüz, 2016). When Table 5 is 

examined, it is seen that the prediction results 

were found with very low errors. The MAPE 

values are 4.075% for the training data set, 

7.160% for the validation data set, and 

7.533% for the testing data set. In previous 
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studies, it was stated that the MAPE ≤ 10% 

indicates high prediction accuracy (Lewis 

1982; Aydin, Karakurt & Hamzacebi, 2014; 

Tiryaki et al., 2017a). Namely, the MAPE 

results of the developed model are within 

acceptable accuracy ranges. From Table 5, it 

is possible to see that the RMSE values are 

0.009, 0.028, and 0.027 for training, 

validation, and testing, respectively. The low 

values of MAPE and RMSE indicates that the 

prediction model could be employed to 

optimize the performance of the milling 

process. 

 

Table 5. The MAPE, RMSE, and R2 results 

Data set 
Performance criterion 

MAPE RMSE R2 

Training 4.075 0.009 0.9947 

Validation 7.160 0.028 0.9658 

Testing 7.533 0.027 0.9737 

 

The regression analysis is often performed 

to evaluate the accuracy of networks. A R2 

value closer to 1 indicates an excellent match 

between measured and predicted outputs (Wu, 

Huang, Schmalz & Fohrer, 2014). The 

correlations between the real and predicted 

outputs are presented in Figure 4. The R2 

values are 0.9947, 0.9658, and 0.9737 for 

training, validation, and testing, respectively. 

The value of R2 in the testing set indicates that 

the network explains at least 97.37% of the 

actual data. This result supports the 

applicability of the prediction model to predict 

power consumption in milling. 

The comparative plots of the actual and 

predicted values are presented in Figure 5. As 

seen in this figure, the values are very close to 

each other. This situation enhances the 

applicability of the ANN model. 

Neural network models can compute 

intermediate values for an optimization study 

(Varol, Canakçı & Özşahin, 2013). In other 

words, well-trained ANNs can provide 

untested experimental results. The impacts of 

process parameters on power consumption 

can be investigated for numerous 

combinations. In this optimization study, 

treatment and rotation speed were fixed as 

untreated and 4060 rpm, respectively, and the 

effect of cutting depth and feed rate on power 

consumption was predicted. Furthermore, in 

another trial, treatment and rotation speed 

were fixed as heat-treated and 4060 rpm, 

respectively, and cutting depth and feed rate 

were changed. The intermediate values were 

obtained by the model for different feed rates 

and cutting depths, and are presented in Figure 

6. The optimization of power consumption 

values can be performed via an analysis of 

responses of the model.  

 
(a) 

 
(b) 

 

 
(c) 

 
Figure 4. The relationship between the 

measured and predicted values: (a) training, 

(b) validation, and (c) testing 



Kastamonu Uni., Orman Fakültesi Dergisi, 2019, 19 (3): 317-328                                 Özşahin and Singer 

Kastamonu Univ., Journal of Forestry Faculty 

 

325 

 

(a) 

 

(b) 

 

(c) 

 
Figure 5. The comparison of the measured and 

predicted values: (a) training, (b) validation, 

and (c) testing 

 

As seen in Figure 6, power consumption 

decreases with decreasing of cutting depth and 

feed rate. Many researchers reported the 

influences of cutting depth and feed rate on 

power consumption in wood machining, and 

the results demonstrated that power 

consumption increases with an increase in 

cutting depth and feed rate (Stewart 1974; 

Aguilera & Martin 2001; Salca 2015). The 

feed of the material that must be taken off 

within the same time unit increases with 

increasing of feed rate. This situation leads to 

higher power consumption (Barcík et al., 

2010). 

 
 

 
Figure 6. The changes in power consumption 

for different feed rates and cutting depths 

 

The modeling results show that there is a 

good agreement between the model outputs 

and the experimental results. Moreover, the 

developed model is able to predict the 

intermediate values with an acceptable 

accuracy. Thanks to the findings of this study, 

the power consumption of the wood milling 

process can be determined in a short period of 

time with low error rates. Consequently, the 

present study may be useful for the forest 

industry to eliminate time-consuming 

experimental investigations. 

 

Conclusion 

This work focused on predicting the 

influences of treatment, rotation speed, 

cutting depth, and feed rate on power 

consumption in the wood milling process by 

means of ANNs. In order to determine the best 

topology, various accuracy analyses were 

carried out using the data obtained from the 

literature. The ANN model with the 4-3-4-1 

structure was the best one for predicting the 

power consumption of the wood milling 

process. 
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The predicted values showed a close match 

with the measured values. The performance of 

the model was acceptable with MAPE = 

7.533%, RMSE = 0.027, and R2 = 0.9737 for 

the testing period. Furthermore, this study 

predicted the intermediate power 

consumption values. Better results were 

obtained with decreasing of feed rate and 

cutting depth. 

Consequently, the ANN approach is a 

successful tool for predicting the power 

consumption of the wood milling process. The 

influences of factors on power consumption 

could be predicted by ANNs without the need 

for an extra experiment. In further research, 

different variables can be used to predict 

power consumption. 
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