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Abstract. In this paper, the differential transformation method is used to examine the random Zeeman Heartbeat 

Model. Some of the parameters and the initial conditions of the model are taken as random variables with Beta 

and Normal distributions, respectively. The approximate analytical solution of the random Zeeman Model is 

obtained and used to find the expectation and variance of the model components. The results from the random 

models including Beta and normal distributed random effects are compared and the approximate numerical 

characteristics are obtained for these cases. The approximate formulas are also modified by using Laplace-Padé 

Method to increase the convergence interval of the approximations. 

Keywords: Zeeman Heartbeat Model, Random differential equation, Expected value, Variance, Padé 

approximation. 

Diferansiyel Dönüşüm Yöntemi İle Rastgele Kalp Atış Modelinin Analizi 

Özet. Bu çalışmada, rastgele Zeeman Kalpatış Modelinin incelenmesi için diferansiyel dönüşüm yöntemi 

kullanılmıştır. Modelin bazı parametreleri ve başlangıç koşulları sırasıyla Beta ve Normal dağılımlara sahip 

rastgele değişkenler olarak alınmıştır. Rastgele Zeeman Modelinin yaklaşık analitik çözümü elde edilmiş ve 

model bileşenlerinin beklenen değer ve varyansı elde edilmiştir. Beta ve normal olarak dağılmış rastgele etkiler 

altında, rastgele modellerin sonuçları karşılaştırılmış ve bu durumlar için elde edilen yaklaşık sayısal 

karakteristikler karşılaştırılmıştır. Elde edilen yaklaşık formüllere, yaklaşımların yakınsama aralığını artırmak 

için Laplace-Padé Metodu uygulanarak iyileştirilmiş çözümler bulunmuştur. 

Anahtar Kelimeler: Zeeman Kalpatış Modeli, Rastgele diferansiyel denklem, Beklenen değer, Varyans, Padé 

yaklaşımı  

1. INTRODUCTION  

The majority of the investigations of mathematical models in various fields of science is performed by 

using deterministic components, ignoring the randomness of the natural course of events. This fact is a 

setback for an accurate description of the events through equation systems since there is always an 

unignorable amount of uncertainty in the natural realizations of all phenomena. The random effects 

approach of Merdan et al. aims to handle this issue swiftly by introducing random noise terms in the 

deterministic parameters of compartmental mathematical models [1,2]. Compartmental models are widely 

used in the modeling of infectious diseases and such a random modeling approach provides a 

straightforward modification of these models to effectively describe the random behavior of diseases. 
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The model used in this study has been introduced by E.C. Zeeman in 1972 [3-5]. It consists of differential 

equations that describe the heart activity under the control of electrical impulses produced by the body. 

The heart regulates the circulation of blood in the body through the contraction of heart muscles, an event 

which is triggered by an electrochemical activity. The equation systems of E.C. Zeeman represent the 

dynamics of the muscle fiber activity and stimulus which controls muscle fiber contraction over time. The 

parameters of the differential equation system will be added random effects with Gaussian (normal) and 

beta distribution to represent the natural fluctuations in the dynamics of heartbeat. Similar modeling 

studies have been made with random effects for bacterial resistance and biochemical reactions [2, 6] . 

In this study, Differential Transformation Method (DTM) will be used to investigate the Zeeman’s 

heartbeat models with random components. DTM [7,8] and similar methods related to DTM have been 

used for analyzing various mathematical models [17,18]. While DTM has many advantages for analyzing 

models such its adaptability for use in fractional, delay and partial differential equation systems, its power 

series form approximate-analytical solution which enables a detailed analysis of the problem of interest 

and its usability in many problems in applied mathematics. However, the series solution brings along a 

serious disadvantage as well, which arises when the problems are analyzed in wide time intervals, causing 

issues on the convergence of the approximate solution. One of the techniques for tackling this problem is 

the Laplace-Pade method, which proposes the use of a ratio two polynomial functions of orders 𝑝 and 𝑞, 

where the orders are arbitrary positive integers. Applications have shown that every different selection of  

𝑝, 𝑞 results in a new approximate solution and generally the selection for 𝑝 = 𝑞 provides the best 

convergence. Modifying the approximate analytical solution through Pade approximants provides a new 

approximate solution which is convergent to the exact solution on a wider time interval. Details of 

Laplace-Pade modification of DTM have been given in the literature [19-20]. 

Our study concentrates on the improvement of the approximate solutions of the Zeeman heartbeat model 

with random components obtained with DTM through Laplace-Pade method [18, 21]. The paper is 

organized as follows: Section 2 includes an analysis of the heartbeat model with two equations including 

an introduction of the Differential Transformation Method and the distributions used. Section 3 contains 

the analysis on the model with three equations. The last section contains the conclusions.

2. TWO DIMENSIONAL ZEEMAN MODEL 

The Zeeman model is used for the modeling of heartbeat and the two dimensional version consists of the 

following differential equations, where 𝑥1 represents the heart muscle fiber length and 𝑥2 represents the 

stimulus: 

𝑑𝑥1

𝑑𝑡
= −

1

𝜖
(𝑥1

3 − 𝑇𝑥1 + 𝑥2),  

                                                               
𝑑𝑥2

𝑑𝑡
= 𝑥1 − 𝑥𝑑 .  (1) 

The parameters of this system, 𝜖, 𝑇, 𝑥𝑑 are defined as follows: 𝑇 represents the tension (𝑇 > 0), 𝜖 is a 

constant that depends on the timescale and 𝑥𝑑 is the typical relaxed fiber length. The deterministic values 

of the parameters have been given as 𝜖 = 0.2; 𝑇 = 0.5 and 𝑥𝑑 = 0 or 0.41 whereas the initial values of 

(1) are given as 𝑥1(0) = 0.5 and 𝑥2(0) = 0 [3-5]. 

 

2.1. Differential Transformation Method 
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An outline of the Differential Transformation Method (DTM) can be given as follows. Let 𝑥(𝑡) be an 

analytical function in the domain 𝐷 and 𝑡 = 𝑡0 be a point in 𝐷. The function 𝑥(𝑡) can be represented by 

using a 𝑡0-centered power series. The k-th derivative of 𝑥(𝑡) is defined as: 

                                                   𝑋(𝑘) =
1

𝑘!
[

𝑑𝑘𝑥(𝑡)

𝑑𝑡𝑘 ]
𝑡=𝑡0

, ∀𝑡 ∈ 𝐷.  (2) 

In (2), 𝑥(𝑡) is the original function and 𝑋(𝑘) is the transformed function. The inverse differential 

transformation of 𝑋(𝑘) is given as [7,8]: 

                                                     𝑥(𝑡) = ∑ 𝑋(𝑘)(𝑡 − 𝑡0)𝑘∞
𝑘=0 , ∀𝑡 ∈ 𝐷.  (3) 

Using (2) and (3), we obtain 

𝑥(𝑡) = ∑
(𝑡−𝑡0)𝑘

𝑘!
∞
𝑘=0 [

𝑑𝑘𝑥(𝑡)

𝑑𝑡𝑘 ]
𝑡=𝑡0

 , ∀𝑡 ∈ 𝐷.                                                 (4) 

The basic theorems for one-dimensional differential transformation are given as below. 

Theorem 1. If 𝑧(𝑡) = 𝑥(𝑡) ± 𝑦(𝑡), then 𝑍(𝑘) = 𝑋(𝑘) ± 𝑌(𝑘). 

Theorem 2. If 𝑧(𝑡) = c𝑦(𝑡), then 𝑍(𝑘) = c𝑌(𝑘). 

Theorem 3. If 𝑧(𝑡) =
𝑑𝑦(𝑡)

𝑑𝑡
, then 𝑍(𝑘) = (k + 1)𝑌(𝑘 + 1). 

Theorem 4. If 𝑧(𝑡) =
𝑑𝑛𝑦(𝑡)

𝑑𝑡
, then 𝑍(𝑘) =

(k+n)!

𝑘!
𝑌(𝑘 + 𝑛). 

Theorem 5. If 𝑧(𝑡) = 𝑥(𝑡)𝑦(𝑡), 𝑍(𝑘) = ∑ 𝑋(𝑘1)𝑌(𝑘 − 𝑘1)𝑘
𝑘1=0 . 

Theorem 6. If 𝑧(𝑡) = 𝑡𝑛, then 𝑍(𝑘) = 𝛿(𝑘 − 𝑛) = {
1 𝑘 = 𝑛
0 𝑘 ≠ 𝑛

. 

In applications, the function 𝑥(𝑡) is represented by an infinite series and by using (4) we can write: 

   𝑥(𝑡) = ∑ 𝑋(𝑘)(𝑡 − 𝑡0)𝑘𝑁
𝑘=0 , ∀𝑡 ∈ 𝐷.                         (5) 

The equation (5) states that ∑ 𝑋(𝑘)(𝑡 − 𝑡0)𝑘∞
𝑘=𝑁+1  has a negligibly small value. 

Consider a system of ordinary differential equations 

𝑑𝑥1

𝑑𝑡
+ ℎ1(𝑡, 𝑥1, 𝑥2, … , 𝑥𝑚) = 𝑔1(𝑡), 

𝑑𝑥2

𝑑𝑡
+ ℎ2(𝑡, 𝑥1, 𝑥2, … , 𝑥𝑚) = 𝑔2(𝑡),                                                  (6) 

𝑑𝑥𝑚

𝑑𝑡
+ ℎ𝑚(𝑡, 𝑥1, 𝑥2, … , 𝑥𝑚) = 𝑔𝑚(𝑡), 

 

with the initial values 

                                                      𝑥1(𝑡0) = 𝑑1,     𝑥2(𝑡0) = 𝑑2, ⋯ , 𝑥𝑚(𝑡0) = 𝑑𝑚                                   (7)   
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Using DTM, the derivative of both sides in the equation system (6)-(7) is obtained as 

(𝑘 + 1)𝑋1(𝑘 + 1) + 𝐻1(𝑘) = 𝐺1(𝑘), 

(8) 

(𝑘 + 1)𝑋2(𝑘 + 1) + 𝐻2(𝑘) = 𝐺2(𝑘), 

⋮ 

(𝑘 + 1)𝑋𝑚(𝑘 + 1) + 𝐻𝑚(𝑘) = 𝐺𝑚(𝑘). 

with 

𝑋1(0) = 𝑑1,     𝑋2(0) = 𝑑2, ⋯ , 𝑋𝑚(0) = 𝑑𝑚.         (9) 

Similarly, the n-th term is obtained for (5) as 

𝜑1,𝑛 (𝑡) = 𝑥1(𝑡) = ∑ 𝑋1(𝑘)𝑡𝑘 ,

𝑁

𝑘=1

 

(10) 
𝜑2,𝑛 (𝑡) = 𝑥2(𝑡) = ∑ 𝑋2(𝑘)𝑡𝑘,

𝑁

𝑘=1

 

⋮ 

𝜑𝑚,𝑛(𝑡) = 𝑥𝑚(𝑡) = ∑ 𝑋𝑚(𝑘)𝑡𝑘.

𝑁

𝑘=1

 

Using DTM for equation (1), we obtain: 

(𝑘 + 1)𝑋1(𝑘 + 1) = −
1

𝜀
[ ∑ ∑ 𝑋1(𝑘1)𝑋1(𝑘2 − 𝑘1)𝑋1(𝑘 − 𝑘2) − 𝑇𝑋1(𝑘) + 𝑋2(𝑘)

𝑘2

𝑘1=0

𝑘

𝑘2=0

], 
(11) 

(𝑘 + 1)𝑋2(𝑘 + 1) = 𝑋1(𝑘) − 𝑥𝑑𝛿(𝑘). 

We will be choosing random parameters and initial values for the two dimensional Zeeman model to 

obtain a random model. In the next section, we introduce the beta and normal distributions which we will 

be using for these random components. 

2.2.  Beta Distribution 

The Beta function 𝐵(𝛼, 𝛽) for the parameters > 0 , 𝛽 > 0 is defined as 

𝐵(𝛼, 𝛽) = ∫ 𝑥𝛼−1(1 − 𝑥)𝛽−1𝑑𝑥
1

0

. (12) 

Dividing both sides of (12) by 𝐵(𝛼, 𝛽), we obtain 

1 =
1

𝐵(𝛼, 𝛽)
∫ 𝑥𝛼−1(1 − 𝑥)𝛽−1𝑑𝑥

1

0

. (13) 

Using the definition of a probability density function, we obtain [9]: 
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𝑓(𝑥) =  {
𝑥𝛼−1(1 − 𝑥)𝛽−1

𝐵(𝛼, 𝛽)
, 0 < 𝑥 < 1

0, 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

. (14) 

where 

𝐵(𝛼, 𝛽) =
Γ(α). Γ(β)

Γ(α + β)
. (15) 

If 𝑋~𝐵(𝛼, 𝛽) is a Beta distributed random variable then, 

𝐸[𝑋] =
𝛼

𝛼 + 𝛽
, 𝑉𝑎𝑟[𝑋] =

𝛼𝛽

(𝛼 + 𝛽)2. (𝛼 + 𝛽 + 1)
, 

𝐸[𝑋2] =
𝛼(𝛼 + 1)

(𝛼 + 𝛽 + 1)(𝛼 + 𝛽)
, 𝐸[𝑋3] =

𝛼(𝛼 + 1)(𝛼 + 2)

(𝛼 + 𝛽 + 2)(𝛼 + 𝛽 + 1)(𝛼 + 𝛽)
, … 

𝐸[𝑋𝑁] =
𝛼(𝛼 + 1)(𝛼 + 2) … (𝛼 + (𝑁 − 1))

(𝛼 + 𝛽 + 𝑁 − 1)(𝛼 + 𝛽 + 𝑁 − 2) … (𝛼 + 𝛽 + 1)(𝛼 + 𝛽)
. 

2.3. Expected Value of the Two Dimensional Zeeman Model 

Using Differential Transformation Method [7,8] and its random counterpart [10-14], we can find the 

approximate solutions of a random process in the form of a power series by using the formula 

𝑥𝑁(𝑡) = ∑ 𝑋(𝑘)𝑡𝑘

𝑁

𝑘=0

.  

The variance and covariance for the approximate solution 𝑥𝑁(𝑡) are given as 

𝐸[𝑥𝑁(𝑡)] = ∑ 𝐸[𝑋(𝑘)]𝑡𝑘 ,

𝑁

𝑘=0

 (16) 

𝑉𝑎𝑟[𝑥𝑁(𝑡)] = ∑ ∑ 𝑐𝑜𝑣(𝑋(𝑖), 𝑋(𝑗))𝑡𝑖+𝑗,

𝑁

𝑖=0

𝑁

𝑗=0

 (17) 

where [11] 

𝑐𝑜𝑣(𝑋(𝑖), 𝑋(𝑗)) = 𝐸(𝑋(𝑖)𝑋(𝑗)) − 𝐸[𝑋(𝑖)]𝐸[𝑋(𝑗)], ∀𝑖, 𝑗 = 0,1, … , 𝑁. (18) 

 

Let the parameter 𝑇 in (1) be a Beta distributed random variable such that 𝑇 ∼ 𝐵𝑒𝑡𝑎(𝛼 = 2, 𝛽 = 1). In 

addition, assume that the initial conditions are assumed to be random variables 𝑌0 and 𝑌1 where 𝑌0 and 𝑌1 

are independent random variables with normal distribution, i.e. 𝑌0, 𝑌1 ∈ 𝑁(𝜇, 𝜎2). Let 𝜇 = 1, 𝜎2 = 1, 𝜎 =

1. Then, 

𝐸[𝑌0] = 𝜇 = 1, 𝐸[𝑌1] = 𝜇 = 1, 
𝐸[𝑌0

2] = 𝜇2 + 𝜎2 = 1 + 1 = 2, 
𝐸[𝑌1

2] = 𝜇2 + 𝜎2 = 1 + 1 = 2, 
𝐸[𝑌0

3] = 𝐸[𝑌1
3] = 𝜇3 + 3𝜇𝜎2 = 1 + 3.1.1 = 4, 

𝐸[𝑌0
4] = 𝐸[𝑌1

4] = 𝜇3 + 6𝜇2𝜎2 + 3𝜎4 = 1 + 6.1.1 + 3.1 = 10, 

𝐸[𝑌0
5] = 𝐸[𝑌1

5] = 𝜇5 + 10𝜇3𝜎2 + 15𝜇𝜎4 = 1 + 10.1.1 + 15.1 = 26, 

𝐸[𝑌0
6] = 𝐸[𝑌1

6] = 𝜇6 + 15𝜇4𝜎2 + 45𝜇2𝜎4 + 15𝜎6 = 1 + 15.1. +45.1.1 + 15.1 = 76, 
𝐸[𝑌0

7] = 𝐸[𝑌1
7] = 𝜇7 + 21𝜇5𝜎2 + 105𝜇3𝜎4 + 105𝜇3𝜎6 = 232. 

(19) 
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Since 𝑇 > 0 is Beta distributed such that 𝑇~𝐵(𝛼 = 2, 𝛽 = 1) [9], 

𝐸[𝑇] =
𝛼

𝛼 + 𝛽
=

2

3
, 

𝐸[𝑇2] =
𝛼(𝛼 + 1)

(𝛼 + 𝛽 + 1)(𝛼 + 𝛽)
=

2.3

3.4
=

1

2
, 

𝐸[𝑇3] =
𝛼(𝛼 + 1)(𝛼 + 2)

(𝛼 + 𝛽 + 2)(𝛼 + 𝛽 + 1)(𝛼 + 𝛽)
=

2

5
, 

𝐸[𝑇4] =
𝛼(𝛼 + 1)(𝛼 + 2)(𝛼 + 3)

(𝛼 + 𝛽)(𝛼 + 𝛽 + 1)(𝛼 + 𝛽 + 2)(𝛼 + 𝛽 + 3)
=

1

3
. 

(20) 

Using (11), the approximate analytical solution of 𝑥1(𝑡) in (1) using 4 terms is obtained as (denoted by 

𝑋1) 

𝑋1 = 𝑌0 + (−5𝑌1 + 5𝑇𝑌0 − 5𝑌0
3)𝑡 + (

75

2
𝑌0

5 − 50𝑌0
3𝑇 +

75

2
𝑌0

2𝑌1 +
25

2
𝑌0𝑇2 −

25

2
𝑌1𝑇 −

5

2
𝑌0) 𝑡2

+ (
25

6
𝑌1 +

50

3
𝑌0

3 −
625

2
𝑌0

7 +
125

6
𝑌0𝑇3 −

125

6
𝑌1𝑇2 +

1125

2
𝑌0

5𝑇 −
875

2
𝑌0

4𝑌1

−
1625

6
𝑌0

3𝑇2 − 125𝑌0𝑌1
2 + 375𝑌0

2𝑌1𝑇 −
25

3
𝑌0𝑇) 𝑡3 + ⋯ 

Hence, the approximate expected value of the random variable 𝑋1 is obtained as 

𝐸[𝑋1] = 𝐸 [𝑌0 + (−5𝑌1 + 5𝑇𝑌0 − 5𝑌0
3)𝑡

+ (
75

2
𝑌0

5 − 50𝑌0
3𝑇 +

75

2
𝑌0

2𝑌1 +
25

2
𝑌0𝑇2 −

25

2
𝑌1𝑇 −

5

2
𝑌0) 𝑡2

+ (
25

6
𝑌1 +

50

3
𝑌0

3 −
625

2
𝑌0

7 +
125

6
𝑌0𝑇3 −

125

6
𝑌1𝑇2 +

1125

2
𝑌0

5𝑇 −
875

2
𝑌0

4𝑌1

−
1625

6
𝑌0

3𝑇2 − 125𝑌0𝑌1
2 + 375𝑌0

2𝑌1𝑇 −
25

3
𝑌0𝑇) 𝑡3] + ⋯ 

Using the independence of the random variables, we find 

𝐸[𝑋1] = 1 −
65

3
𝑡 +

10945

12
𝑡2 − 67353.472𝑡3 + ⋯ (21) 

The expected value of 𝑋1 is shown in Figure 1. 
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Figure 1. The expected value of X1. 

𝑋2 = 𝑌1 + 𝑌0𝑡 + (−
5

2
𝑌1 +

5

2
𝑇𝑌0 −

5

2
𝑌0

3) 𝑡2

+ (
25

2
𝑌0

5 −
50

3
𝑌0

3𝑇 +
25

2
𝑌0

2𝑌1 +
25

6
𝑌0𝑇2 −

25

6
𝑌1𝑇 −

5

6
𝑌0) 𝑡3 + ⋯ 

Hence, its expectation becomes 

𝐸[𝑋2] = 𝐸 [𝑌1 + 𝑌0𝑡 + (−
5

2
𝑌1 +

5

2
𝑇𝑌0 −

5

2
𝑌0

3) 𝑡2

+ (
25

2
𝑌0

5 −
50

3
𝑌0

3𝑇 +
25

2
𝑌0

2𝑌1 +
25

6
𝑌0𝑇2 −

25

6
𝑌1𝑇 −

5

6
𝑌0) 𝑡3] + ⋯ 

𝐸[𝑋2] = 1 + 𝑡 −
65

6
𝑡2 +

10945

36
𝑡3 + ⋯ (22) 

The approximate expected value of 𝑋2 is shown in Figure 2. It should be noted that more terms are needed 

for accurate approximate expectations 𝐸[𝑋1], 𝐸[𝑋2]. The first three terms have been given to present the 

calculation method and to underline the improvements obtained by the modification. 
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Figure 2. The expected value of X2. 

2.4.  Laplace-Padé Method 

If Laplace-Padé method [15,16] is used to improve the results, i.e. to obtain convergent results in a wider 

interval, the following result is obtained for (21): 

𝑀1

=
1

7424222958497731096191780362649627
𝑒−

56373593243647997

418931110051840
𝑡

× (7424222958497731096191780362649627

× 𝑐𝑜𝑠ℎ (
1

418931110051840
𝑡√2474740986165910365397260120883209)

+ 141890257577574391√2474740986165910365397260120883209

× 𝑠𝑖𝑛ℎ (
1

418931110051840
𝑡√2474740986165910365397260120883209)) 

 

This new expected value of 𝑋1, denoted by 𝑀1, is shown in Figure 3.  

Similarly, Laplace-Padé method for (22) gives:  

𝑀2 =
1

381232315
𝑒−

11075

272
𝑡 (381232315𝑐𝑜𝑠ℎ (

1

816
𝑡√1143696945)

+ 11347√1143696945𝑠𝑖𝑛ℎ (
1

816
𝑡√1143696945)) 

 

The modified expected value for 𝑋2, denoted by 𝑀2, is shown in Figure 4. 
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Figure 3. The expected value of 𝑋1, obtained by modified DTM. 

 

Figure 4. The expected value of 𝑋2, obtained by modified DTM. 

2.5. Variances for Two Dimensional Zeeman Model 

Using the formulas (17) and (18), the variances for the two dimensional model is obtained as follows. 

For the variance of 𝑥1 (using a three term truncated approximation): 
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𝑉𝑎𝑟[𝑋1(𝑡)] = ∑ ∑ 𝑐𝑜𝑣(𝑋1(𝑖), 𝑋1(𝑗))𝑡𝑖+𝑗

2

𝑖=0

=

2

𝑗=0

1 −
160

3
𝑡 +

87235

18
𝑡2 + ⋯ (23) 

Laplace-Padé method for (25) gives 

𝑀3 =  −
1

56738917631
𝑒

(
1395760

36981
𝑡)

(−56738917631𝑐𝑜𝑠ℎ (
73

36981
𝑡√3886227235)

+ 673616√3886227235𝑠𝑖𝑛ℎ (
73

36981
𝑡√3886227235)) 

Similarly, the variance for 𝑋2 is: 

𝑉𝑎𝑟[𝑋2(𝑡)] = ∑ ∑ 𝑐𝑜𝑣(𝑋1(𝑖), 𝑋1(𝑗))𝑡𝑖+𝑗

2

𝑖=0

=

2

𝑗=0

1 − 4𝑡2 + ⋯ (24) 

and the modified variance becomes 

𝑀4 = 𝑐𝑜𝑠(2√2𝑡).  

2.6. Expected Values for Initial Conditions with Normal Distribution 

Assume that the initial conditions 𝑌0 and 𝑌1 of (1) are independent random variables with normal 

distribution. Using (19), the expected value of the (truncated) approximate solution 𝑋1 becomes (note that 

unlike Section 2.3, the parameter 𝑇 is not a random variable here): 

𝐸[𝑋1] = 1 −
45

2
𝑡 +

7555

8
𝑡2 − 69644.271𝑡3 + ⋯ (25) 

If Laplace-Padé method is applied to (25), we obtain 

𝑀5 = 0.1 × 10−9(9999999999𝑐𝑜𝑠ℎ(119.2044503𝑡)

+ 9501091052𝑠𝑖𝑛ℎ(119.2044503𝑡))𝑒−135.7572336𝑡. 

 

Similarly, the expected value of the approximate solution 𝑋2 is 

𝐸[𝑋2] = 1 + 𝑡 −
45

4
𝑡2 +

7555

24
𝑡3 + ⋯ (26) 

Its modification is obtained as 

𝑀6 =
1

60525305
𝑒

(−
7645

188
𝑡)

(60525305𝑐𝑜𝑠ℎ (
1

188
𝑡√60525305)

+ 7833√60525305𝑠𝑖𝑛ℎ (
1

188
𝑡√60525305)). 
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2.7. Expected Values for Random 𝑻 Parameter with Beta Distribution 

If the parameter 𝑇 in (1) is assumed to be Beta distributed, the approximate expected value of 𝑋1 up to 𝑡3 

can be obtained by using (20) as follows (note that unlike Section 2.3, the initial values are not random 

variables here): 

𝐸[𝑋1] =
1

2
+

25

24
𝑡 −

215

192
𝑡2 −

9625

2304
𝑡3 + ⋯ (27) 

Using Laplace-Padé on (27) gives 

𝑀7 = −
1

1357422
𝑒

(
1175

508
𝑡)

(−678711𝑐𝑜𝑠 (
1

508
√2262370𝑡)

+ 35√2262370𝑠𝑖𝑛 (
1

508
√2262370𝑡)). 

 

 

Similarly, the expected value of the analytical solution 𝑋2 becomes 

𝐸[𝑋2] =
1

2
𝑡 +

25

48
𝑡2 −

215

576
𝑡3 + ⋯  

Its modification is obtained as 

𝑀8 =
4

165
√55𝑒

(
25𝑡

24
)
𝑠𝑖𝑛 (

3

8
√55𝑡).  

3. THREE DIMENSIONAL ZEEMAN MODEL 

Let the initial conditions 𝑌1, 𝑌2, 𝑌3 be normal distributed and the model parameters 𝜉, 𝜇, 𝜃 be (standard) 

Beta distributed random variables. Consider the three dimensional model (Zeeman, 1977) 

𝑑𝑥1

𝑑𝑡
= −𝑥1

3 − 𝑥2𝑥1 − 𝑥3 

𝑑𝑥2

𝑑𝑡
= −𝜉𝑥1 − 𝜇𝑥2 

𝑑𝑥3

𝑑𝑡
= −𝑥2 − 𝜃 

𝑥1(0) = 𝑌1, 𝑥2(0) = 𝑌2, 𝑥3(0) = 𝑌3 

(28) 

Since the initial conditions are independent and identically distributed, 𝐸[𝑌1] = 𝐸[𝑌2] = 𝐸[𝑌3] as in (19) 

and (20). The deterministic values are given as 𝜉 = 2, 𝜇 = 2, 𝜃 = 1 (Zeeman, 1977). We use 

𝜉, 𝜇, 𝜃~𝐵𝑒𝑡𝑎(𝛼, 𝛽) where 𝛼 = 1 and 𝛽 = 1. Using the properties of Beta distribution and (20), we get 

𝐸[𝜉] = 𝐸[𝜇] = 𝐸[𝜃] =
𝛼

𝛼 + 𝛽
=

1

2
 

𝐸[𝜉2] = 𝐸[𝜇2] = 𝐸[𝜃2] =
𝛼(𝛼 + 1)

(𝛼 + 𝛽 + 1)(𝛼 + 𝛽)
=

1

3
  

(29) 



 

  

296 Oral et al. / Cumhuriyet Sci. J., Vol.40-2 (2019) 285-298 

𝐸[𝜉3] = 𝐸[𝜇3] = 𝐸[𝜃3] =
𝛼(𝛼 + 1)(𝛼 + 2)

(𝛼 + 𝛽 + 2)(𝛼 + 𝛽 + 1)(𝛼 + 𝛽)
=

1

4
 

𝐸[𝜉4] = 𝐸[𝜇4] = 𝐸[𝜃4] =
𝛼(𝛼 + 1)(𝛼 + 2)(𝛼 + 3)

(𝛼 + 𝛽)(𝛼 + 𝛽 + 1)(𝛼 + 𝛽 + 2)(𝛼 + 𝛽 + 3)
=

1

5
. 

Using this information, the expected values of 𝑋1, 𝑋2 and 𝑋3 are obtained as below: 

𝐸[𝑋1] = 𝐸 [𝑌1 + (−𝑌1𝑌2 − 𝑌1
3 − 𝑌3)𝑡

+ (
1

2
𝑌1𝑌2𝜇 + 2𝑌1

3𝑌2 +
3

2
𝑌1

2𝑌3 +
1

2
𝑌1𝑌2

2 +
1

2
𝑌2𝑌3 +

1

2
𝑌1

2𝜉 +
3

2
𝑌1

5 +
1

2
𝑌2

+
1

2
𝜃) 𝑡2

+ (−3𝑌1
2𝑌2𝑌3 −

5

6
𝑌1

3𝑌2𝜇 −
2

3
𝑌1

2𝑌2𝜉 −
1

2
𝑌1𝑌2

2𝜇 −
1

2
𝑌1𝑌3𝜉 −

1

6
𝑌1

2𝜇𝜉

−
1

6
𝑌1𝑌2𝜇2 −

1

3
𝑌2𝑌3𝜇 −

1

6
𝑌1𝑌2

3 −
1

6
𝑌2

2𝑌3 −
1

6
𝑌2𝜃 − 𝑌1𝑌3

2 −
9

2
𝑌1

5𝑌2

−
7

2
𝑌1

4 𝑌3 −
13

6
𝑌1

3𝑌2
2 − 𝑌1

4𝜉 −
1

2
𝑌1

2𝑌2 −
1

2
𝑌1

2𝜃 −
1

6
𝑌1𝜉 −

1

6
𝑌2𝜇 −

5

7
𝑌1

7

−
1

6
𝑌2

2) 𝑡3] + ⋯ = 1 − 6𝑡 + 53𝑡2 −
27677

36
𝑡3 + ⋯ 

(30) 

Using Laplace-Padé for the truncated approximation (30) gives 

𝑀9 =
1

403622041
𝑒

(−
23861

840
𝑡)

(403622041𝑐𝑜𝑠ℎ (
1

840
𝑡√403622041)

+ 18821√403622041𝑠𝑖𝑛ℎ (
1

840
𝑡√403622041)). 

 

Similarly, the expected value of the approximate analytical solution 𝑋2 is found as 

𝐸[𝑋2] = 𝐸 [𝑌2 + (−𝑌1𝜉 − 𝑌2𝜇)𝑡 + (
1

2
𝑌1

3𝜉 +
1

2
𝑌1𝑌2𝜉 +

1

2
𝑌3𝜉 +

1

2
𝑌1𝜇𝜉 +

1

2
𝑌2𝜇2) 𝑡2

+ (−
1

2
𝑌1

5𝜉 −
2

3
𝑌1

3𝑌2𝜉 −
1

2
𝑌1

2𝑌3𝜉 −
1

6
𝑌1𝑌2

2𝜉 −
1

6
𝑌2𝑌3𝜉 −

1

6
𝑌1

2𝜉2

−
1

3
𝑌1𝑌2𝜇𝜉 −

1

6
𝑌2𝜉 −

1

6
𝜉𝜃 −

1

6
𝑌1

3𝜉𝜇 −
1

6
𝑌3𝜉𝜇 −

1

6
𝑌1𝜉𝜇2 −

1

6
𝑌2𝜇3) 𝑡3 ]

+ ⋯ 

⇒ 𝐸[𝑋2] = 1 − 𝑡 +
43

24
𝑡2 −

661

72
𝑡3 + ⋯ 

(31) 

Using Laplace-Padé method, the modification is obtained as 

𝑀10 =
1

957199
𝑒

(−
309

31
𝑡)

(957199𝑐𝑜𝑠ℎ (
1

186
𝑡√2871597)

+ 556√2871597𝑠𝑖𝑛ℎ (
1

186
𝑡√2871597)). 
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The expected value of 𝑋3 is found as 

𝐸[𝑋3] =  𝐸 [𝑌3 + (−𝑌2 − 𝜃)𝑡 + (
1

2
𝑌1𝜉 +

1

2
𝑌2𝜇) 𝑡2

+ (−
1

6
𝑌1

3𝜉 −
1

6
𝑌1𝑌2𝜉 −

1

6
𝑌3𝜉 −

1

6
𝑌1𝜇𝜉 −

1

6
𝑌2𝜇2) 𝑡3] + ⋯ 

⇒ 𝐸[𝑋3] = 1 −
3

2
𝑡 +

1

2
𝑡2 −

43

72
𝑡3 + ⋯. 

(32) 

The Laplace-Padé modification of (32) becomes 

𝑀11 =  −
1

151
𝑒

(
5

6
𝑡)

(−151𝑐𝑜𝑠ℎ (
1

6
𝑡√151) + 14√151𝑠𝑖𝑛ℎ (

1

6
𝑡√151)). 

4. CONCLUSION 

In this study, we have used the random version of the Differential Transformation Method to investigate 

the approximate solutions of the two and three dimensional Zeeman models. The initial values 𝑌0, 𝑌1 and 

the parameter 𝑇 were assumed to be normal and standard Beta distributed random variables, respectively. 

Using these random values, the expected values and variances were found for the two dimensional model. 

Similarly, the same approximate characteristics were investigated for the three dimensional model too. 

Finally, Laplace-Padé method was used to modify these approximations and obtain new functions for the 

approximate numerical characteristics. It is known from the literature that the modified approximations 

obtained by Laplace-Padé method are generally convergent to the exact solutions in a wider time interval. 

As the results show, it is seen that the modified approximate results are convergent to the exact solution, 

which are also consistent with the deterministic results in the literature. Results from Zeeman’s studies 

[3-5] and other studies which do not contain random components show that the systems (1), (28) 

successfully model the contraction and relaxation of the heart muscles and the electrical signal 

transmission process. In this study, we have shown the use of random components in these models shows 

that similar results for the biological significance of the equation systems can be achieved with additional 

results for the variance and standard deviations of the results that imply deviations in the muscle and 

electrical signal transmission behavior. This study underlines the adaptability of DTM and Laplace-Pade 

methods to heartbeat models with random components and the applications can also be generalized to 

other mathematical models. 
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