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Abstract 

Most rock masses are excellent foundation materials due to their bearing capacities of MPa. However, the ultimate bearing 

capacity of rock masses should be accurately estimated in the design of structures with high foundation loads. In this study, the 

ultimate bearing capacities of a strip footing built on rock masses with different geotechnical properties are determined using the 

finite element method (FEM) and the failure criterion of Hoek & Brown. The results of FE-analyses are compared to those 

obtained from the limit equilibrium methods (LEM) in the literature. It has been shown that the FEM with associated flow rule 

and Terzaghi`s limit equilibrium method give similar failure surfaces for most cases, and the ratio of ultimate bearing capacities 

determined according to the Terzaghi´s method to FEM varies between 1.5 and 4. In cases, in which the failure surfaces obtained 

from both methods differ, this ratio can rise up to 11. 
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Keywords: Ultimate bearing capacity; Rock masses; Finite element method; Limit equilibrium method. 

1. Introduction 

Most rock masses are excellent foundation materials due to their bearing capacities of MPa. However, in the 

design of structures with high foundation loads such as high-rise buildings, dams and viaduct piers, the ultimate 

bearing capacities of rock masses should be accurately estimated. 
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Because of discontinuities existing in rock masses, the estimation of their bearing capacities is more difficult than 

soils. Various methods can be found in the literature to estimate the ultimate bearing capacity of shallow footings 

built on rock masses. These can be grouped under 4 main groups: Limit equilibrium, Slip-line, Limit analysis and 

Numerical methods [1-6]. In addition, the bearing capacities of certain rock types can be estimated empirically with 

the help of diagrams developed depending on the unconfined compressive strengths of intact rocks and the widths of 

openings existing in rock masses [7]. 

Terzaghi`s limit equilibrium method [1] with the failure criterion of Mohr-Coulomb is widely used by engineers 

working in construction practice to estimate the ultimate bearing capacity of shallow foundations. Bowles [8] 

pointed out that intact rock samples are used in the laboratory to determine the shear strength parameters (c and ϕ) so 

that they do not account for the effect of discontinuities existing in rock masses. Therefore, he suggested that 

ultimate bearing capacities calculated according to the Terzaghi`s approach should be reduced.  

It is known that the shear strengths of most rocks are significantly affected by stress levels. Furthermore, rocks 

have significant tensile strengths compared to soils. Among the nonlinear failure criteria in the literature, the 

criterion of Hoek and Brown reliably simulates the deformation behavior of isotropic rocks [9,10]. Miranda et al. 

[11] combined the limit equilibrium method suggested by Wyllie [2] with the Hoek & Brown failure criterion. 

The numerical methods have become widely used for solving complex engineering problems. In the last two 

decades, a growing use of numerical methods with the Hoek & Brown criterion have been observed to estimate the 

bearing capacities of rock masses. 

In the recent studies, Javid, Fahimifar and Imani [12] investigated the effect of the interaction between two 

shallow strip footings on the ultimate bearing capacity using the Hoek & Brown criterion and two-dimensional 

numerical analyses. It has been seen that the ratio of the bearing capacity of a strip footing under the effect of a 

neighboring footing to the bearing capacity of the same isolated footing is about 1.3 to 1.6. Mansouri, Imani and 

Fahimifar [13] studied the ultimate bearing capacity of square- and rectangular-shaped footings with the help of the 

Hoek and Brown criterion and three-dimensional numerical analyses. It has been shown that the ultimate bearing 

capacities obtained from the 2D-analyses are higher than in the 3D-analyses. Shamloo and Imani [14] demonstrated 

that the effect of embedment depths on the bearing capacity of footings in rock masses cannot be taken into account 

correctly with the aid of equivalent surface loads. Using a self-developed adaptive finite element limit analysis code, 

Wu et al. [15] studied the ultimate bearing capacity of footings subjected to eccentric loads in rock masses with 

voids. To estimate the bearing capacity of strip footings on rock masses under three-dimensional effect, Chen, Zhu 

and Zhang [16] developed an analytical method using the failure criterion of Hoek & Brown. Ranjbarnia, Zarei and 

Goudarzy [17] introduced a probabilistic approach to estimate the bearing capacity of shallow foundations on rock 

masses. Das and Chakraborty [18] developed the design charts to estimate the bearing capacity of strip foundations 

with eccentric and inclined loads. Chen, Zhu and Zhang [19] demonstrated that ignoring the three-dimensional 

strength and the weight of rock mass would lead to the underestimation of the bearing capacity of rock masses.  

In the present study, the ultimate bearing capacity of a strip footing on rock masses with different geotechnical 

properties was estimated using the finite element method (FEM) with the failure criterion of Hoek & Brown. The 

results of the FE-analyses are compared to those obtained from the limit equilibrium methods (LEM) suggested by 

Terzaghi [1] and Miranda et al. [11]. The present study shows engineers working in construction practice the limits 

of the use of limit equilibrium methods in determining the bearing capacity of rock masses. 

2. Methodology 

2.1. Numerical method 

The software Plaxis-2D [20], which is based on the finite element method, is used to estimate the ultimate 

bearing capacity of a strip footing on rock masses. 

https://link.springer.com/article/10.1007/s11629-023-8312-2#auth-Debarghya-Chakraborty-Aff1
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Numerical model: 

By utilizing the symmetry feature, only half of the numerical model shown in Figure 1 was created. Pre-analyses 

have shown that the size effect of the model on the numerical results can be ignored if the horizontal and vertical 

lengths of the model were not smaller than 12.5 m and 10 m, respectively. The lateral boundaries were fixed in the 

horizontal direction while the bottom boundary was fixed in the both directions. A rigid strip footing was modeled 

as a continuous load with a width of 0.5 m on the rock surface without an embedment depth. In order to model a 

rough footing, the horizontal movement of the footing was prevented. In the vertical direction, a deformation value 

leading to the ground failure was inputted. The ground water level was defined at the base of the model, and the 

moist unit weight of the rock masses was set to 24 kN/m
3
. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. FE-model in Plaxis 2D. 

The effect of mesh density on the numerical results is well known. A dense mesh causes prolonged analysis time 

and an uneconomical solution while the use of a relatively loose mesh affects the accuracy of numerical results. In 

Plaxis-2D [20], the generation of FE-mesh is fully automated and a robust triangulation procedure. Pre-analyses 

have shown that a relatively dense mesh generated in the area of 5 m x 6 m under the foundation load in Fig. 1 

allowed the numerical results to converge to a constant value. As a result, 942 triangular elements with 15 nodes and 

an average element size of 0.42 m were generated in the numerical model. 

The analyses consisted of 2 stages. In the first step, the initial stress condition existing in the rock mass before the 

foundation load was reconstructed using the K0-procedure. The second stage was the plastic calculation stage, in 

which the reaction force of the rock mass corresponding to the deformation inputted in the vertical direction was 

determined. To determine the ultimate bearing capacity, the graph of the reaction force-deformation obtained for 

Point A was considered. In this graph, twice the maximum load that converges to a constant value, which was 

determined using the method of tangent intersection defined by Singh et al. [21], was assumed to be qult. 

Constitutive model: 

In Plaxis-2D [20], the stress-strain behaviors of rock masses were modeled using the criterion of Hoek and 

Brown. The empirical equation proposed by Hoek for intact rocks is expressed as follows [9,10]: 

 

𝜎1 =  𝜎3 + 𝜎𝑐𝑖 · (𝑚𝑖 ·  
𝜎3

𝜎𝑐𝑖
 +  1)0,5                                                                                                                               (1) 
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where 𝜎𝑐𝑖 is the unconfined compressive strength of intact rock, mi is material constant for intact rock, which is 

determined experimentally. Depending on the rock type, it can take values between 2 and 35. 

 

Later, the Hoek`s criterion was developed by Brown for jointed rock masses, and it is called the Hoek-Brown 

failure criterion. Hoek-Brown [9,10] generalized failure criterion is expressed by Eq. (2): 

 

𝜎1 =  𝜎3 + 𝜎𝑐𝑖 · (𝑚𝑏 ·  
𝜎3

𝜎𝑐𝑖
 +  s)𝑎                                                                                                                                                 (2) 

 

where the parameters “mb, s and a” are the material constants for rock mass and can be calculated by using Eq. (3)-

(5):  

 

𝑠 = 𝑒(
𝐺𝑆𝐼−100

9−3𝐷
)
                                                                                                                                                               (3) 

 

𝑎 = 0,5 + 0,167 · (𝑒
−𝐺𝑆𝐼

15 − 0,0013)                                                                                                                                            (4) 

 

𝑚𝑏 = 𝑚𝑖 · 𝑒(
𝐺𝑆𝐼−100

28−14𝐷
)
                                                                                                                                                          (5) 

 

where GSI is Geological Strength Index, D is disturbance factor. 

 

The geological strength index of the rock mass is determined visually depending on the structure of rock masses 

and their surface properties. The GSI-values vary between 0 for rocks that have decomposed into the soil and 100 

for intact rocks with unweathered surfaces. A chart for determining GSI -value is given by Hoek and Brown [10]. 

The value of the disturbance factor varies between 0 (for undisturbed rocks) and 1 (for disturbed rocks by 

excavations or explosion etc.).  

The Hoek & Brown failure criterion should be used for intact rocks, rock masses with several discontinuities and 

heavily jointed rock masses (Group I and III) which have similar surface properties and can be considered isotropic 

[5]. Furthermore, this failure criterion was based on the brittle failures observed in triaxial tests on intact rocks. 

Therefore, it should not be used for principal stress levels at which ductile failure appears [9,10]. Furthermore, it 

should not be used if the size of the rock blocks is larger than the structure or they have same size or if one group of 

discontinuities existing in the rock mass is weaker than the others [5,12]. 

Eight parameters must be inputted in Plaxis-2D [20]. These parameters are: 1) Young's modulus of rock mass 

Erm, 2) Poisson's ratio of rock mass ν, 3) unconfined compressive strength of intact rock σci, 4) material constant for 

intact rock mi, 5) geological strength index of rock mass GSI, 6) disturbance factor D, 7) dilation angle of rock mass 

φmax for zero confining pressure, and 8) confining pressure σφ at the depth, where the dilation angle is equal to zero. 

The Young's modulus Erm can be calculated based on the GSI and D values with the help of the following 

simplified equation: 

 

𝐸𝑟𝑚(𝑀𝑃𝑎) =  105 · (
1−

𝐷

2

1+𝑒
(

75+25𝐷−𝐺𝑆𝐼)
11 )

)                                                                                                                        (6) 

 

Poisson's ratio ν varies between 0.1 and 0.4 depending on the rock type. In this study, the value of ν was taken as 

0.2. Since the foundation used in the numerical model has no embedment depth, there will be no excavation, and 

thus no disturbance occurs in the rock mass. Therefore, the value of D was taken as 0. In the analyses, the 

unconfined compressive strength σci of intact rock was considered with 4 different values σci = 1, 5, 25, 100 MPa, 

the material constant mi of intact rock with 3 different values mi = 2.5, 10, 20, and the geological strength index of 

rock mass GSI with 5 different values GSI = 10, 30, 50, 70, 90. 
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Rock masses show dilatation behaviour when they are subjected to shearing under low confining pressures. In 

this study, the value of φmax was set to the friction angle of the rock mass, and its value was decreased linearly to 0 at 

a certain depth (associated flow) [20]. The confining stress at the depth where the dilation angle is zero was set to 

σφ= 1000 kN/m
2
 taking into account that the vertical length of the model and the unit weight of rock masses were 10 

m and 24 kN/m
3
, respectively. 

2.2. Limit equilibrium method 

In the present study, the limit equilibrium methods suggested by Terzaghi [1] and Miranda et al. [11] are used to 

estimate the ultimate bearing capacities of rock masses. 

Terzaghi`s method: 

Terzaghi [1,22] proposed the failure surface under a strip foundation whose width B is very small compared to its 

length (see Figure 2a). This failure surface consists of 3 zones: 1) a triangular zone ACD, 2) radial shear zones AFD 

and CDE with logarithmic spirals DE and DF, 3) Rankine triangular passive zones AFH and CEG. The ultimate 

bearing capacity qult is obtained by considering the equilibrium of the triangular wedge ACD and using the failure 

criterion of Mohr-Coulomb as follow: 

 

𝑞𝑢𝑙𝑡 = 𝑐 · 𝑁𝑐 + 𝛾 · 𝐷𝑓 · 𝑁𝑞 + 0,5 · 𝛾 · 𝐵 · 𝑁𝛾                                                                                                                (7) 

 

where c is cohesion, γ is unit weight of rock mass, Df is foundation depth, B is foundation width, Nc, Nq and Nγ are 

bearing capacity factors that can be calculated by using Eqs. (8)-(10) depending on the friction angle ϕ of the rock 

mass: 

 

𝑁𝑐 = 5 · 𝑡𝑎𝑛4 (45 +
𝜙

2
)                                                                                                                                               (8) 

 

𝑁𝑞 = 𝑡𝑎𝑛6 (45 +
𝜙

2
)                                                                                                                                                    (9) 

 

𝑁𝛾 = 𝑁𝑞 + 1                                                                                                                                                               (10) 

Miranda`s method: 

Miranda et al. [11] combined Wyllie`s limit equilibrium method [2] with the Hoek & Brown failure criterion. In 

Figure 2b, the wedge A is the active wedge and the wedge B is the passive wedge, which are representing the failure 

zones under a strip footing. In this method, the weights of the rock masses and the shear stresses that develop at the 

interface of both wedges are neglected. The wedges A and B are assumed to be in compression as in triaxial shear 

tests. 
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Fig. 2. Ultimate bearing capacity of rock masses according to (a) Terzaghi [22]; (b) Wyllie [2]. 

Assuming that there is no load on the rock surface outside the foundation area, the major and minor principal 

stresses in the wedge B will act in the horizontal direction (σ1B) and in the vertical direction (σ3B = 0), respectively. 

When the wedge A collapses, the minor principal stress σ3A acting on the wedge A will be equal to the major 

principal stress σ1B in the wedge B. Therefore, the major principal stress σ1A in the wedge A will correspond to the 

ultimate bearing capacity qult of the footing. 

In the Miranda`s method, by substituting σ3 = σ3B = 0 in Eq. (2), the following equation is firstly obtained for the 

wedge B: 

 

 𝜎1𝐵 =  𝜎𝑐𝑖 · 𝑠𝑎                                                                                                                                                              
(11) 

 

Then, substituting σ3 = σ3A = σci ·s
a
 in Eq. (2), the following equation is obtained for the wedge A, which gives the 

ultimate bearing capacity qult: 

 

𝑞𝑢𝑙𝑡 = 𝜎1𝐴 = 𝜎𝑐𝑖 · [𝑠𝑎 + (𝑚𝑏 · 𝑠𝑎 + 𝑠)𝑎]                                                                                                                      (12) 

3. Results and discussion 

3.1. Comparison of the failure surfaces obtained from the FEM and LEM 

The numerical analyses carried out in this study gave three different failure surfaces, as shown in Fig. 3. These 

failure surfaces were called failure type A, B, and C. A summary of the failure types observed in the FE-analyses 

with associated flow is given in Table 1 depending on the Hoek & Brown parameters. 
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Fig. 3. Failure surfaces obtained from the FE-analyses: (a) failure type A, (b) failure type B, (c) failure type C. 

A total of 60 analyses were performed, and the most of these analyses gave a failure zone shown in Fig. 3a 

(Failure type A). This failure zone corresponds to the general shear failure suggested by Terzaghi in Fig. 2a. 

Only in 3 analyses (σci = 25 MPa, mi = 10, GSI = 30; σci = 25 MPa, mi = 10, GSI = 90 and σci = 100 MPa, mi = 

20, GSI = 10), the Rankine triangular passive zone did not develop while the triangular zone and radial shear zone 

developed. The failure type B shown in Fig. 3b is a local shear failure.  

In 12 analyses (σci=100 MPa, mi = 10, GSI = 10 – 90; σci = 100 MPa, mi = 20, GSI = 30 – 90; σci = 25MPa, mi = 

20, GSI = 70 – 90 and σci = 25 MPa, mi = 10, GSI = 50), the failure surface shown in Figure 3c appeared. Compared 

to the failure type A, a triangular wedge under the foundation appeared more deeply while the other zones of the 

Terzagi`s failure surface did not develop (punching failure). On the other hand, a new failure surface developed in 

vertical direction towards the inner part of the rock mass.  

When the failure surfaces obtained from the FEM are examined, it is seen that the failure mechanism proposed  

by Wyllie [2,11] in Fig. 2b does not develop. Therefore, only the qult - values calculated according to the Terzaghi`s  

approach were used for comparison in Figure 4. 

  Table 1. Failure types depending on the Hoek & Brown parameters. 

Rock parameters                                                        GSI (-) 

σci (MPa) mi (-) 10 30 50 70 90 

1 

2.5 A A A A A 

10 A A A A A 

20 A A A A A 

5 

2.5 A A A A A 

10 A A A A A 

20 A A A A A 

25 

2.5 A A A A A 

10 A B C A B 

20 A A A C C 

100 
2.5 A A A A A 

10 C C C C C 
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20 B C C C C 

 

3.2. Comparison of the ultimate bearing capacities obtained from the FEM and LEM 

In order to make a comparison between the results of the FEM and the Terzaghi`s method, the equivalent 

parameters of the Mohr-Coulomb criterion (c and ϕ) corresponding to the Hoek-Brown parameters used in the FE-

analyses should be determined. The parameters of Mohr-Coulomb are calculated by plotting a linear envelope on the 

nonlinear failure envelope of Hoek and Brown that provides the best fit for a given stress range. 

Table 2. Equivalent Mohr-Coulomb parameters for mi = 2.5. 

GSI  

(-) 

σci  

(MPa) 

1 5 25 100 

c  

(MPa) 
ϕ  

(°) 
c  

(MPa) 
ϕ  

(°) 
c  

(MPa) 
ϕ  

(°) 
c  

(MPa) 
ϕ  

(°) 

10 0.01 9.5 0.05 9.5 0.25 9.5 1.00 9.5 

30 0.02 15.0 0.11 15.0 0.52 15.0 2.09 15.0 

50 0.03 19.5 0.17 19.5 0.83 19.5 3.34 19.5 

70 0.06 24.0 0.31 24.0 1.54 24.0 6.16 24.0 

90 0.17 26.5 0.83 26.5 4.14 26.5 16.57 26.5 

 

Table 3. Equivalent Mohr-Coulomb parameters for mi = 10. 

GSI  

(-) 

σci  

(MPa) 

1 5 25 100 

c  

(MPa) 
ϕ  

(°) 
c  

(MPa) 
ϕ  

(°) 
c  

(MPa) 
ϕ  

(°) 
c  

(MPa) 
ϕ  

(°) 

10 0.02 18.0 0.10 18.0 0.48 18.0 1.92 18.0 

30 0.04 24.5 0.18 24.5 0.88 24.5 3.52 24.5 

50 0.05 30.5 0.25 30.5 1.25 30.5 4.98 30.5 

70 0.07 36.5 0.36 36.5 1.78 36.5 7.11 36.5 

90 0.13 41.5 0.64 41.5 3.21 41.5 12.83 41.5 

Table 4. Equivalent Mohr-Coulomb parameters for mi = 20. 

GSI  

(-) 

σci  

(MPa) 

1 5 25 100 

c  

(MPa) 
ϕ  

(°) 
c  

(MPa) 
ϕ  

(°) 
c  

(MPa) 
ϕ  

(°) 
c  

(MPa) 
ϕ  

(°) 

10 0.03 23.5 0.13 23.5 0.65 23.5 2.59 23.5 

30 0.05 30.5 0.23 30.5 1.12 30.5 4.49 30.5 

50 0.06 36.5 0.31 36.5 1.54 36.5 6.14 36.5 

70 0.08 42.5 0.41 42.5 2.05 42.5 8.22 42.5 

90 0.13 48.0 0.63 48.0 3.16 48.0 12.65 48.0 

 

In this study, the equivalent Mohr-Coulomb parameters were calculated using the Software RocData [23]. Here, 

the “General” option was selected as the failure envelope interval, and the equivalent Mohr-Coulomb parameters 

were determined for the stress range of 0 < σ3 < 0.25·σci, in which a brittle failure appears. The equivalent 

parameters of Mohr-Coulomb (c and ϕ) corresponding to the parameters of Hoek-Brown are given in Tables 2-4. 

In Tables 5-7, the ultimate bearing capacities obtained from the finite element method (FEM) and limit 

equilibrium methods (LEM) are given depending on the various rock mass properties. As it can be seen from Tables 
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5-7, Terzaghi`s approach [1] gives the highest values of ultimate bearing capacity while the lowest values are 

obtained from the Miranda`s method. Only in 3 analyses (σci = 25 MPa, mi = 20, GSI = 90; σci = 100 MPa, mi = 20, 

GSI = 90 and σci = 100 MPa, mi = 20, GSI = 70), the qult-values calculated according to Miranda`s method are 

negligibly larger than the values in the FEM. 

Table 5. Ultimate bearing capacities obtained from the FEM and LEM for mi = 2.5. 

GSI 

(-) 

                                       σci  

                                 (MPa) 

 

1 5 25 100 

Ultimate Bearing Capacity qult  

(MPa) 

FEM 
Miranda 

et al.  
Terzaghi  FEM 

Miranda 

et al.  
Terzaghi  FEM 

Miranda 

et al.  
Terzaghi  FEM 

Miranda 

et al.  
Terzaghi  

10 0.07 0.01 0.14 0.24 0.05 0.54 0.85 0.25 2.51 2.70 1 9.78 

30 0.25 0.07 0.37 0.93 0.35 1.58 3.95 1.75 7.58 14.65 7 29.94 

50 0.53 0.23 0.78 2.35 1.15 3.50 10.80 5.75 17.01 42.38 23 64.51 

70 1.20 0.63 1.93 5.70 3.15 8.85 27.75 15.75 43.51 110.75 63 173.22 

90 2.95 1.73 5.87 14.40 8.65 28.21 71.45 43.25 139.94 286.00 173 559.39 

 

 

Table 6. Ultimate bearing capacities obtained from the FEM and LEM for mi = 10. 

GSI 

(-) 

                                       σci  

                                 (MPa) 

 

1 5 25   100 

Ultimate Bearing Capacity qult  

(MPa) 

FEM 
Miranda 

et al.  
Terzaghi  FEM 

Miranda 

et al.  
Terzaghi  FEM 

Miranda 

et al.  
Terzaghi  FEM 

Miranda 

et al.  
Terzaghi  

10 0.28 0.02 0.43 0.84 0.10 1.81 2.85 0.50 8.74 3.30 2 34.54 

30 0.75 0.13 1.21 2.65 0.65 5.38 8.63 3.25 26.13 25.02 13 103.87 

50 1.40 0.38 2.72 5.74 1.90 12.10 20.20 9.50 58.85 73.47 38 234.11 

70 2.80 1.01 6.21 12.21 5.05 27.92 54.85 25.25 136.24 140.38 101 542.61 

90 6.05 2.66 16.73 28.60 13.30 77.88 120.11 66.50 384.26 373.10 266 1532.15 

 

 

Table 7. Ultimate bearing capacities obtained from the FEM and LEM for mi = 20. 

GSI 

(-) 

                                       σci  

                                 (MPa) 

 

1 5 25 100 

Ultimate Bearing Capacity qult  

(MPa) 

FEM 
Miranda 

et al.  
Terzaghi  FEM 

Miranda 

et al.  
Terzaghi  FEM 

Miranda 

et al.  
Terzaghi  FEM 

Miranda 

et al.  
Terzaghi 

10 0.55 0.03 0.88 1.81 0.15 3.75 5.35 0.75 17.98 12.45 3 71.0 

30 1.34 0.17 2.45 4.70 0.85 10.88 18.15 4.25 52.74 31.05 17 209.21 

50 2.61 0.51 5.48 9.80 2.55 24.55 34.20 12.75 119.81 55.12 51 476.45 

70 4.65 1.34 12.51 20.10 6.70 56.21 40.89 33.50 274.42 127.14 134* 1092.52 

90 9.10 3.47 32.32 42.50 17.35 146.65 81.79 86.75* 718.54 386.06 347* 2863.07 

 

 
In the most FE-analyses, the vertical deformations occurring in the rock masses under the loads corresponding to 
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the ultimate bearing capacity of the footing were smaller than 2 cm. Only in 12 analyses (σci = 100 MPa, mi = 2.5, 

GSI = 70-90; σci = 100 MPa, mi = 2.5-10, GSI = 50; σci = 100 MPa, mi = 2.5-20, GSI = 30; σci = 100 MPa, mi = 2.5-

10, GSI = 10; σci = 25 MPa, mi = 10-20, GSI = 10 and σci = 25 MPa, mi = 20, GSI = 30), the vertical deformations 

varied between 2 cm – 9 cm. 

 

                   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                     

 

 

 

 

 

 

 

Fig. 4. Comparison of the ultimate bearing capacities obtained from the FEM and Terzaghi`s method: a) mi = 2.5, b) mi =10, c) mi =20. 

In cases in which the unconfined compressive strength of the intact rock σci is relatively low (σci ≤ 5 MPa with 

mi = 2.5-20 and σci ≤ 25 MPa with mi < 20), the ratio of the ultimate bearing capacity calculated according to the 

Terzaghi`s approach qult (Terzaghi) to those in the FEM qult (FEM) varies between 1.5 and 4. In cases in which the value of 

σci is higher (σci = 25 MPa with mi = 20 and GSI > 50 as well as σci > 25 MPa with mi > 2.5), the ratio of qult (Terzaghi) / 

qult (FEM) varies between 3 and 11 (Fig. 4). This increase can be explained by the developing of more different failure 

surfaces shown in Figures 3b and 3c than the general shear failure suggested by Terzaghi in Fig. 2a. 

4. Conclusions 

In the present study, the ultimate bearing capacity of a strip footing constructed on rock masses with different 

material properties (σci = 1 to 100 MPa, mi = 2.5 to 20 and GSI = 10 to 90) are estimated using the finite element 
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method (FEM) with Hoek & Brown failure criterion. The results of the FE-analyses are compared to those 

determined according to the limit equilibrium method (LEM) suggested by Terzaghi [1] and Miranda et al. [11]. The 

analyses give the following results: 

 

 The Terzaghi`s approach gives the highest values of ultimate bearing capacities while the lowest values are 

obtained from the approach of Miranda; 

 In most cases, especially in cases in which the unconfined compressive strength of the intact rock is 

relatively low (σci ≤ 5 MPa with mi = 2.5-20, σci ≤ 25 MPa with mi < 20), the FEM and the Terzaghi`s 

method give the similar failure surfaces. In these cases, the ratio of the ultimate bearing capacities obtained 

from the Terzaghi´s method qult (Terzaghi) to those in the finite element method qult (FEM) varies between 

1.5 and 4.  

 In cases in which the value of σci is relatively high (σci = 25 MPa with mi = 20 and GSI > 50 as well as σci > 

25 MPa with mi > 2.5), the ratio of qult(Terzaghi) /qult(FEM) can rise up to 11; 

 The relatively high ratios of qult(Terzaghi) /qult(FEM) appear especially for rock masses with high unconfined 

compressive strengths (σci ≥ 25 MPa), which can be explained that the rocks with relatively low 

compressive strengths behave like soils. 

 

Finally, it should be mentioned that the loads corresponding to the ultimate bearing capacity of footings can lead 

to high deformations, which may be not allowed. The most important advantage of the FEM compared to the LEM 

is that it enables the estimation of deformations of rock masses under foundation loads. However, the correct 

estimation of the dilatant behaviour of rock masses has an essential role in accuracy of the FE-results. Thus, 

sensitivity analyses are necessary with respect to the value of maximum dilatancy angle on rock surface and its 

variation with depth. 
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