
 

 
NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci., 2024; 13(2), 680-689 

 Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 

Niğde Ömer Halisdemir University Journal of Engineering Sciences 

Araştırma makalesi / Research article 

www.dergipark.org.tr/tr/pub/ngumuh / www.dergipark.org.tr/en/pub/ngumuh 

 

 

 

* Sorumlu yazar / Corresponding author, e-posta / e-mail: ozgepinarakkas@kku.edu.tr (Ö. P. Akkaş) 

Geliş / Recieved:  13.11.2023   Kabul / Accepted: 04.03.2024    Yayımlanma / Published: 15.04.2024 
doi: 10.28948/ngumuh.1390037 

 

680 

Electric fish optimization for economic load dispatch problem  

Ekonomik yük dağitim problemi için elektrik baliği optimizasyonu 

 

Yağmur Arıkan Yıldız1 , Özge Pınar Akkaş2,* , Mustafa Saka3 ,  Melih Çoban4 ,  

İbrahim Eke5  
1 Sivas University of Science and Technology, Electrical and Electronics Engineering Department, 58000, Sivas, Türkiye  

2,5 Kırıkkale University, Electrical and Electronics Engineering Department, 71450, Kırıkkale, Türkiye 
3 İskenderun Technical University, Electrical and Electronics Engineering Department, 31200, İskenderun, Hatay, Türkiye  

4 Bolu Abant İzzet Baysal University, Electrical and Electronics Engineering Department, 14030, Bolu, Türkiye 

 

Abstract   Öz  

The Economic Load Dispatch (ELD) problem is an 

essential aspect of power system planning and operational 

scheduling. Different techniques and algorithms have been 

recommended to solve it, aiming to minimize the cost of 

power generation with satisfying the load requirements. In 

this paper, a new algorithm called Electric Fish 

Optimization (EFO) is used to solve the ELD problem by 

considering the line losses, ramp rate limits, maximum and 

minimum capacities of the generators and prohibited 

operating zones (POZ). The algorithm has been utilized in 

test systems consisting of 6 and 15 units and its outcomes 

have been compared to those from previous research 

studies. The proposed algorithm has been shown to achieve 

minimum cost, indicating its superiority and effectiveness 

in addressing power system planning challenges. It is 

evident that the presented algorithm offers a valuable 

solution for optimizing ELD problems. 

 Ekonomik Yük Dağıtımı (EYD) problemi, güç sistemi ve 

güç sisteminin işletimi planlamasında çok önemli bir 

alandır. Bu problem çözmek için yük talebini karşılarken 

elektrik üretim maliyetini en aza indirmeyi amaçlayan 

farklı teknikler ve algoritmalar önerilmiştir. Bu çalışmada, 

hat kayıpları, rampa hız limitleri, jeneratörlerin maksimum 

ve minimum kapasiteleri ile yasak çalışma bölgeleri 

dikkate alınarak EYD problemini çözmek için Elektrik 

Balığı Optimizasyonu (EBO) adı verilen yeni bir algoritma 

kullanılmıştır. Algoritma 6 ve 15 birimden oluşan test 

sistemlerinde uygulanmıştır ve sonuçları daha önce yapılan 

araştırmalarla karşılaştırılmıştır. Önerilen algoritmanın, 

güç sistemi planlama zorluklarını ele almadaki üstünlüğünü 

ve etkinliğini gösteren minimum maliyete ulaştığı 

gösterilmiştir. Önerilen algoritmanın EYD problemlerini 

optimize etmek için değerli bir çözüm sunduğu sonucuna 

varılmıştır. 

Keywords: Economic load dispatch, Electric fish 

optimization, Power systems 

 Anahtar kelimeler: Ekonomik yük dağıtımı, Elektrik 

balığı optimizasyonu, Güç sistemleri 

1 Introduction 

Energy is an indispensable source of human life. From 

primitive times to the present day, the diversity, production 

and consumption of energy resources have followed an 

increasing development in parallel with the increasing needs 

of human beings. Especially after the industrial revolution, 

the demand for energy increased even more. In addition, 

while energy was abundant and cheap before the 1973s, 

energy prices rose rapidly due to the oil crisis in the 1973s 

[1]. 

Today, with the developing technology, energy is the 

most fundamental factor of economic and social 

development and has become the most important factor 

guiding the world economy and policies. Due to the ever-

increasing energy need, maintaining the balance between 

energy production and consumption and the import of energy 

resources by many countries are the most important 

problems in this regard. The most important goals in the 

energy policies of societies created according to these 

problems can be listed as follows: 

 Obtaining uninterrupted, timely, cheap and clean 

energy, 

 Using the generated energy economically, 

 Bringing energy to more people [2].  

In line with these goals, power systems have become 

quite complex, and the operations of these power systems 

need to be planned and operated in the most appropriate way. 

Thermal power plants have a large share in energy 

production. The process of achieving the most efficient and 

cost-effective operation of thermal power units to meet 

power demands, through careful planning and enhancing 

system reliability, is referred to as ELD. In other words, ELD 

is the generation of the energy demanded by the system at 

minimum cost considering certain operational and system 

constraints [3, 4]. Therefore, the ELD problem is an 

optimization problem that includes various equations and 

inequalities such as production capacity ranges of units, cost 

functions and POZ. In general, classical methods were used 

to figure out these problems in the past. These generally 

require continuously and linearly increasing cost functions. 

However, the ELD problem is not continuous. In addition, 
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the desired full performance could not be achieved in these 

methods due to the increase in calculation time as the system 

grows [5-7]. For these reasons, nowadays, heuristic methods 

and nature-inspired algorithms are more preferred in solving 

these problems. A selection of relevant studies on this topic 

in the existing literature includes the following: 

Tosun et al. have employed a simulation algorithm to 

minimize the hourly energy consumption of the load 

supplied by three thermal power plants [8]. Basu has utilized 

the differential evolution algorithm to address the economic 

environmental dispatch problem across three distinct test 

systems, each comprising 6, 10, and 40 generation units [9]. 

Yang et al. have applied the firefly algorithm to solve the 

ELD problem in four different test systems. This study has 

encompassed numerous non-linear aspects, including valve 

point effects, ramp rate constraints and POZ considerations 

[10]. L. Slimani and T. Bouktir have employed the artificial 

bee colony algorithm in their research to address the 

emission-controlled economic dispatch problem. The 

algorithm has been applied on two systems: the IEEE 30-bus 

with 6 generator test system and the 59-bus power system in 

Algeria [11]. Kumar et al. have implemented an enhanced 

particle swarm optimization algorithm on three distinct 

power systems, resulting in lower cost values compared to 

traditional particle swarm optimization methods and their 

derivatives [12]. Sulaiman et al. have used cuckoo search 

algorithm to address the combined economic load-emission 

dispatch problem on a six-unit power system, where 

transmission line losses have been neglected, and forty-unit 

power system, where the valve point effect has been included 

[13]. Abdelaziz et al. have converted the problem into a 

single objective function by incorporating a modified price 

penalty factor to simultaneously minimize both fuel cost and 

emission levels. They then applied the flower pollination 

algorithm to solve this transformed problem [14]. Pradhan et 

al. have implemented grey wolf optimization to tackle the 

ELD problem across a test system featuring 10, 40, 80, and 

140 units. The problem has been enriched with nonlinear 

components, encompassing ramp rate constraints, valve 

point effects and POZ considerations [15]. Trivedi et al. have 

implemented interior search algorithm on a microgrid 

consisting of distribution generator, solar and wind units for 

minimizing both fuel cost and emission [16]. Jadoun et al. 

have employed the fireworks algorithm to address the 

dynamic ELD problem in a hybrid system comprising solar, 

thermal generators and wind [17]. Srivastava and Das have 

introduced a novel human intelligence-based metaheuristic 

optimization technique for tackling the ELD problem [18]. 

Das et al. have used dragonfly algorithm for the ELD 

problem in four varied test systems and obtained the lowest 

cost value as a result of comparison with many heuristic 

algorithms in all systems [19]. Deb et al. have applied 

turbulent water flow optimization for both economic and 

environmental load distribution on a test system with valve 

effect and conduction losses and demonstrated through 

numerical examples that the optimization has successful 

[20].  

This article investigates the ELD problem on test systems 

comprising 6 units with a load demand of 1263 MW and 15 

units with a load demand of 2630 MW. The problem has 

been enriched with operation constraints for the system, 

encompassing minimum and maximum production limits for 

generators, ramp rate limits, POZ constraints and power 

balance considerations. The EFO, which has been introduced 

to the new literature in 2019, has been used to address the 

problem. The success and effectiveness of the algorithm 

have been proven with the study results. 

2 Formulation of economic load dispatch problem  

The goal of the ELD problem is to reduce fuel costs while 

considering a range of both equality and inequality 

constraints. These encompass ramp rate limits, power 

balance, generation capacity limits and POZ considerations. 

2.1 Objective function  

The computation of the objective function for the ELD 

problem is described in Equation 1. 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐹𝐶 = ∑𝐹𝐶𝑥(𝑃𝑥)

𝑔

𝑥=1

 (1) 

 

The total fuel cost ($/h), represented as FC, is determined 

by the number of generators (g) in the power system, as well 

as the output power of each generator PX (MW) and their 

respective fuel costs FCX. The primary goal of this function 

is to minimize FC. 

Equation 2 depicts the calculation of fuel cost for each 

individual generator. 

 

𝐹𝐶𝑥(𝑃𝑥) = ∑𝑎𝑥𝑃𝑥
2 + 𝑏𝑥𝑃𝑥 + 𝑐𝑥

𝑔

𝑥=1

 (2) 

 

Where aX, bX, cX represent the cost coefficients of the x-

th generator. 

2.2 Constraints on generator operations 

2.2.1 Minimum and maximum generating limits 

In a power system, each generator comes with its own 

minimum and maximum power output constraints. These 

restrictions are integral to the ELD problem, ensuring that 

each generator's power output falls within its designated 

range, as demonstrated in Equation 3 [21, 22]. 

 

𝑃𝑥,𝑚𝑖𝑛 ≤ 𝑃𝑥 ≤ 𝑃𝑥,𝑚𝑎𝑥 (3) 

 

Where Px,min and Px,max represent the minimum and 

maximum power output of the x-th generator, respectively. 

2.2.2 Ramp rate limits 

The ramp rate constraint holds significance within the 

ELD problem, guaranteeing that a generator's power output 

does not exceed a specified rate of change, thus maintaining 

system stability and preventing sudden fluctuations in power 

generation. It is defined as presented in Equation 4 [21].  

 

𝑃𝑥 − 𝑃𝑥
0 ≤ 𝑈𝑃𝑅𝑥    𝑎𝑛𝑑 𝑃𝑥

0 − 𝑃𝑥 ≤ 𝐷𝑊𝑅𝑥 (4) 
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Where Px
0 is output power of x-th generator in the 

previous time, UPRx and DWRx indicate the up-ramp and 

down-ramp limits of the x-th generator, respectively.  

Based on Equations 3 and 4, it is possible to derive 

limitations for PX as shown in Equation 5 [21]. 

 

max(𝑃𝑥,𝑚𝑖𝑛 ,  𝑃𝑥
0 − 𝐷𝑊𝑅𝑥) ≤ 𝑃𝑥

≤ min(𝑃𝑥,𝑚𝑎𝑥 ,  𝑃𝑥
0 + 𝑈𝑃𝑅𝑥) 

    

(5) 

 

2.2.3 Prohibited operating zones limits 

While solving the ELD problem, one important 

consideration is the POZ. These zones represent operating 

conditions in which the generator cannot operate due to 

technical or safety reasons.  

In practical applications, it is essential to ensure that the 

output power of a generating unit does not fall within POZ. 

The limitations for PX in terms of these operating zones are 

shown in Equation 6 [21].  

 

{

𝑃𝑥,𝑚𝑖𝑛 ≤ 𝑃𝑥 ≤ 𝑃𝑥,1
𝐿𝑊

𝑃𝑥,ℎ−1
𝑈𝑃 ≤ 𝑃𝑥 ≤ 𝑃𝑥,ℎ

𝐿𝑊    ℎ = 2,… , 𝑝𝑜𝑧𝑥

𝑃𝑥,𝑝𝑜𝑧𝑥 
𝑈𝑃 ≤ 𝑃𝑥 ≤ 𝑃𝑥,𝑚𝑎𝑥  

 
    

(6) 

 

Where pozx indicate the number of POZ for the x-th 

generator, P(x,h)LW and P(x,h)UP represent the lower and 

upper limits of the h-th POZ for the x-th generator, 

respectively. 

2.3 Power balance 

The constraint of power balance is given in Equation 7 

[21, 23]. 

∑𝑃𝑥 = 𝑃𝐷𝑀 + 𝑃𝐿𝑆

𝑔

𝑥=1

 (7) 

 

As can be seen in Equation 7, the total power generated 

by the generators must meet the total demand (PDM) and the 

loss (PLS) on the line. 

The estimation of PLS, which is dependent on the 

actual output power of the generators, is often found by 

Kron's loss equation. This equation is formulated as shown 

in Equation 8. 

 

𝑃𝐿𝑆 =∑∑𝑃𝑥𝐵𝑥𝑦𝑃𝑦 +∑𝐵𝑥0𝑃𝑥 + 𝐵00

𝑔

𝑥=1

𝑔

𝑦=1

𝑔

𝑥=1

 (8) 

 

3 Electric fish algorithm  

EFO is a new intuitive algorithm founded on the 

collective intelligence of electric fish and their distinctive 

characteristics. This algorithm was introduced to the 

literature by Yılmaz and Şen in 2019 [24].  

The electric fish species that inspired the algorithm have 

a special electrical organ in their bodies containing disc-like 

electrical cells (electrocytes) and they produce an electric 

field thanks to the electrical signals produced by these 

organs. There are two main parameters that characterize the 

generated electrical signals and are involved in the 

algorithm's mechanism. The first factor is frequency, which 

exhibits an inverse relationship with the time gap between 

two successive electrical signals. The second factor is the 

amplitude parameter, which is correlated with the size of the 

fish [24, 25]. 

The working mechanism of EFO, like many nature-

inspired algorithms, is based on finding the best quality food 

source.  Within an infinite search space, it is assumed that 

there exists a single food source considered to be the optimal 

choice. Electric fish are individuals of the optimization 

algorithm and carry location information within the search 

space. After the initialization phase, electric fish move 

through the search space in search of the optimal source. As 

they move closer to the best source, the frequency of the 

signal generated by the fish increases and the search space 

narrows. This state of the electric fish is called active 

electrolocation mode.  Electric fish located at a considerable 

distance from the best source allow the recognition of 

distances and the recognition of relationships with other fish. 

This state of electric fish is called passive electrolocation 

mode. As mentioned before, the algorithm uses the term 

frequency as a reference for distance-related operations. 

Another important feature of the algorithm is that individuals 

with higher quality sources generate signals with higher 

amplitude [24, 25].  

3.1 Steps of electric fish optimization 

3.1.1 General steps  

 

Similar to other nature-inspired algorithms, individuals 

make up the population in the algorithm. A total of N 

individuals are initially and randomly placed within the 

search space [24, 25]: 

 

𝑥𝑖𝑘 = 𝑥𝑙𝑜𝑤𝑒𝑟𝑘 + 𝜑(𝑥𝑢𝑝𝑝𝑒𝑟𝑘 − 𝑥𝑙𝑜𝑤𝑒𝑟𝑘) (9) 

 

where N is the the population size. i depicts the number 

of the individual (i= 1,2.. N) and k represents dimension of 

the search space (k=1, 2.. d). xik is the location information 

of the ith individual. xlowerk and xupperk correspond to 

minimum and maximum boundaries for dimension, 

respectively. φ is a random value ranging from 0 to 1 [24, 

25]. 

After each iteration of the calculation of location 

information, the individuals' amplitude and frequency values 

are updated. In this update, the individuals that are 

considered to be closer to the source are kept in active mode, 

i.e. high frequency -narrow range, while the other individuals 

are kept in passive electrolocation mode, i.e. low frequency-

wide range. If the maximum value of the frequency value fmax 

and the minimum value fmin are shown, since the frequency 

value of each individual is related to the source, the 

frequency value of each individual is related to its fitness 

value [24, 25]: 

 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖
𝑗
= 𝑓𝑚𝑖𝑛 + (

𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑤𝑜𝑟𝑠𝑡
𝑗

− 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖
𝑗

𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑤𝑜𝑟𝑠𝑡
𝑗

− 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑏𝑒𝑠𝑡
𝑗 ) (𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛) (10) 
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where fitnessi
j is the fitness value of the ith individual at 

iteration j. fitnessworst
j and fitnessbest

j are respectively 

calculated worst and best fitness values at the relevant 

iteration j.  The fmin and fmax values are also the maximum and 

values of the fitness value and these values are fixed between 

0 and 1, respectively. 

The amplitude of the electric fish provides information 

about its active range and probability of detection and this 

value (Ai
j) is calculated in relation to the previous amplitude 

of the individual as follows [24, 25]: 

 

𝐴𝑖
𝑗
=∝ 𝐴𝑖

𝑗−1
+ (1−∝)𝑓𝑖

𝑗
 (11) 

 

Where ∝ varies between 0-1. The initial amplitude value 

of the individual is considered equal to the frequency value 

of that individual. 

3.1.2 Active electrolocation steps  

In active electrolocation, only one parameter is allowed 

to change in the range of movement with respect to the 

presence of neighbours so that fish do not move away from 

promising spots. This parameter is the individual's activity 

trajectory and the individual's active distance estimate can be 

determined using Equation 12 [24, 25]. 

 

𝑟𝑖 = (𝑋𝑢𝑝𝑝𝑒𝑟𝑘 − 𝑋𝑙𝑜𝑤𝑒𝑟𝑘)𝐴𝑖 (12) 

 

To discover neighbouring individuals in the search range, 

it is essential to calculate the distance between the ith 

individual and its neighbouring individual (mth), This value 

is calculated with the help of the following equation and 

should be equal to the smaller of the active distance of the 

individual [24, 25]. 

 

𝑑𝑖𝑚 = ‖𝑥𝑖 − 𝑥𝑚‖ = √∑(𝑥𝑖𝑘 − 𝑥𝑚𝑘)
2

𝑑

𝑘=1

 (13) 

 

If there is at least one neighbouring individual within the 

active area, Equation 14 is employed, otherwise Equation 15 

is applied [24, 25]. 

 

𝑥𝑖𝑘
𝑐𝑎𝑛𝑑 = 𝑥𝑖𝑘 + 𝜔(𝑥𝑚𝑘 − 𝑥𝑖𝑘) (14) 

 

𝑥𝑖𝑘
𝑐𝑎𝑛𝑑 = 𝑥𝑖𝑘 +𝜔𝑟𝑖 (15) 

 

Where xik
cand states candidate location of the ith 

individual and w is a random value ranging between -1 and 

1. 

3.1.3 Passive electrolocation steps  

Passive electrolocating individuals (Np) fulfil the global 

search task within the algorithm. Individuals in passive mode 

select active electrolocating individuals (NA) based on their 

probability of detection and change their locations. The 

probability of the mth individual (mth ϵ NA) performing 

active electrolocation being detected by the ith individual 

performing passive electrolocation is calculated as follows: 

 

𝑝𝑚 =
𝐴𝑚 /𝑑𝑖𝑚

∑ 𝐴𝑘/𝑑𝑖𝑘𝑘𝜖𝑁𝐴

 (16) 

 

After selecting M individuals with the help of the above 

equation, the calculation of a reference point (xrk) for them 

is carried out with Equation 17, and finding new positions is 

carried out with Equation 18. 

 

𝑥𝑟𝑘 =
∑ 𝐴𝑚𝑥𝑚𝑘
𝑀
𝑚=1

∑ 𝐴𝑚
𝑀
𝑚=1

 (17) 

 

𝑥𝑖𝑘
𝑛𝑒𝑤=𝑥𝑖𝑘 + 𝑤(𝑥𝑟𝑘 − 𝑥𝑖𝑘) (18) 

 

Although it is not a very common situation, individuals 

with high frequencies are capable of engaging in passive 

electrolocation. To prevent it, Equation 19 is used to 

determine which parameter values of individuals will 

change. 

 

𝑥𝑖𝑘
𝑐𝑎𝑛𝑑 = {

𝑥𝑖𝑘
𝑛𝑒𝑤  𝑟𝑎𝑛𝑑𝑘(0,1) > 𝑓𝑖
 𝑥𝑖𝑘                       𝑒𝑙𝑠𝑒 

} (19) 

 

In passive electrolocation, finally, a parameter of an 

individual is changed using Equation 20. The reason for 

doing this is to increase the possibility of a characteristic of 

the individual changing. 

 

𝑥𝑖𝑘
𝑐𝑎𝑛𝑑 = 𝑥𝑙𝑜𝑤𝑒𝑟𝑘 + 𝑤(𝑥𝑢𝑝𝑝𝑒𝑟𝑘 − 𝑥𝑙𝑜𝑤𝑒𝑟𝑘) (20) 

 

For the repositioning of the kth dimension parameter of 

the ith individual in case it goes beyond the limits of the 

search space, the following equation is used. 

 

𝑥𝑖𝑘
𝑐𝑎𝑛𝑑 =

{
 
 

 
 

    
𝑥𝑙𝑜𝑤𝑒𝑟𝑘                     𝑥𝑖𝑘

𝑐𝑎𝑛𝑑 < 𝑥𝑙𝑜𝑤𝑒𝑟𝑘  

𝑥𝑖𝑘
𝑐𝑎𝑛𝑑     𝑥𝑢𝑝𝑝𝑒𝑟𝑘 > 𝑥𝑖𝑘

𝑐𝑎𝑛𝑑 > 𝑥𝑙𝑜𝑤𝑒𝑟𝑘

𝑥𝑢𝑝𝑝𝑒𝑟𝑘                  𝑥𝑖𝑘
𝑐𝑎𝑛𝑑 > 𝑥𝑢𝑝𝑝𝑒𝑟𝑘

 

 (21) 

 

4 Simulation studies and results 

In this research, the efficiency of the recommended EFO 

is evaluated by applying it to both 6-unit test system with 

1263 MW load demand and 15-unit test system with 2630 

MW load demand in comparison to established optimization 

techniques commonly used to address the ELD problem. The 

data for the 6-unit and 15-unit test systems, encompassing 

details regarding cost coefficients, minimum and maximum 

generation limits, POZ for generating units, ramp rate 

constraints and loss coefficients have been sourced from the 

study [21]. 

4.1 The results for 6-unit test system 

The ELD problem is executed on a 6-unit test system, 

accounting for factors such as line losses, ramp rate limits, 

maximum and minimum generating limits and POZ limits. 

The EFO algorithm has been executed 30 independent runs 

for the 6-unit system. The proposed approach has been 
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implemented with a maximum of 400 iterations and a 

population size of 200.  The total cost of this operation 

amounted to $15446.64 and the line losses are determined to 

be 12.6301 MW. 

The optimal generation scheduling and the data of 

minimum/maximum generating values and POZ of each 

generator, transmission loss, total cost, total power 

generation for 6-unit system are presented in Table 1. 

 

Table 1. The outcomes for optimal generation scheduling 

with the data of minimum/maximum generating values and 

POZ of each generator for 6-unit system  

Unit 
Generation 

(MW) 

Px,min 

(MW) 

Px,max 

(MW) 
POZ (MW) 

1 437.9359 100 500 [210,240], [350,380] 

2 176.6343 50 200 [90,110], [140,160] 

3 261.6775 80 300 [150,170], [210,240] 

4 136.3328 50 150 [80,90], [110,120] 

5 167.9562 50 200 [90,110], [140,150] 

6 95.0934 50 120 [75,85], [100,105] 

Loss (MW): 12.6301, Cost ($): 15446.64, Total power generation (MW): 

1275.6301 

 

As shown in Table 1, the output of the generators remains 

within the limits of maximum and minimum values, avoiding 

falling in the POZ. It is observed that the system also meets 

the ramp rate limits. The data of initial generation (at t=0), 

up and down ramp limits of each generator for the 6-unit 

system in the study [21] clearly shows that the units are 

generating power by providing ramp rate limits. 

Furthermore, it is noteworthy that the system also satisfies 

the power balance constraint. The total power generation 

(1275.6301 MW) meets the total demand (1263 MW) and 

the loss on the line (12.6301 MW). 

The convergence curves of decision variables with 

iterations for the EFO algorithm and 6-unit system is given 

in Figure 1. 

Upon examining the convergence curves of decision 

variables for EFO algorithm and 6-unit system in Figure 1, it 

can be seen that a majority of the generators achieve optimal 

generating power without reaching the maximum iteration 

number, indicating the fast convergence of the proposed 

algorithm. 

The convergence curve of objective function with 

iterations for the EFO algorithm and 6-unit system is given 

in Figure 2. 

The fuel cost convergence curve for the EFO algorithm 

and 6-unit system presented in Figure 2 shows that the EFO 

algorithm achieves the lowest objective function in fewer 

iterations, highlighting the efficiency of this proposed 

method. 

The statistical results for 6-unit system including the best, 

the worst, the median, the mean cost and the standard 

deviation of the proposed algorithm and various algorithms 

documented in the literature have been given in Table 2. 

 

Figure 1. Convergence curves of decision variables for 

EFO algorithm and 6-unit system 

 

 

Figure 2. Convergence curve of fuel cost for EFO 

algorithm and 6-unit system 

 

According to the results presented in Table 2, the EFO 

algorithm recommended in this study achieves a best cost 

compared to various methods in the literature with the 

exception of SOH-PSO and Jaya when solving the ELD 

problem on the 6-unit test system. Although there is very 

little difference in the best value with the SOH-PSO and Jaya 

algorithms, the worst and the mean cost give better results 

than these algorithms. The mean cost obtained by the EFO 

algorithm also gives the best result compared to all other 

algorithms. 

4.2 The results for 15-unit test system 

The ELD problem is executed on a 15-unit test system, 

accounting for factors such as line losses, ramp rate limits, 

maximum and minimum generating limits and POZ limits. 

The EFO algorithm has been executed 30 independent runs 

for the 15-unit system. The proposed approach has been 

implemented with a maximum of 1000 iterations and a 

population size of 500. 
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Table 2. Statistical results for 6-unit system 

Algorithm Best Worst Median Mean Standard Deviation 

EFO 15446.64 15450.82 15447.91 15448.08 1.07 

GA [26] 15459 15524 NIA 15469 NIA 

CBA [27] 15450.24 15518.66 NIA 15454.76 2.965 

NPSO-LRS [28] 15450 15454 NIA 15452 NIA 

PSO [26] 15450 15492 NIA 15454 NIA 

MABC [29] 15449.90 15449.90 NIA 15449.90 6.04E–08 

MSSA [30] 15449.90 15453.55 NIA 15449.94 0.3647 

ST-IRDPSO [31] 15449.89 NIA NIA 15450.70 1.416 

DEa [32] 15449.77 15449.87 NIA 15449.78 NIA 

DEb [33] 15449.58 15449.65 NIA 15449.62 NIA 

MCSA [34] 15449.17 15449.39 NIA 15449.24 0.2681 

HHS [35] 15449.00 15453.00 NIA 15450.00 NIA 

SOH-PSO [36] 15446.02 15609.64 NIA 15497.35 NIA 

GAAPI [37] 15449.78 15449.85 NIA 15449.81 NIA 

DE [32] 15449.766 15449.777 NIA 15449.874 NIA 

Jaya [38] 15446.5675 15573.5151 NIA 15489.7034 13.3122 

SA [39] 15461.1 15545.5 NIA 15488.98 28.3678 

TS [39] 15454.89 15498.05 NIA 15472.56 13.7195 

SSGA [40] 15447 15470 NIA 15450 7.458 

FA [41] 15450.509 15458.4427 NIA 15452.531 2.048 

CMFA [41] 15449.8994 15449.8994 NIA 15449.8994 8.96E-06 

MTS [39] 15450.06 15453.64 NIA 15451.17 NIA 

The total cost of this operation amounted to $32692.30 

and the line losses are determined to be 29.0475 MW. 

The optimal generation scheduling and the data of 

minimum/maximum generating values and POZ of each 

generator, transmission loss, total cost, total power 

generation for 15-unit system are presented in Table 3. 

As shown in Table 3, the output of the generators remains 

within the limits of maximum and minimum values, avoiding 

falling in the POZ. It is observed that the system also meets 

the ramp rate limits. The data of initial generation (at t=0), 

up and down ramp limits of each generator for the 15-unit 

system in the study [21] clearly shows that the units are 

generating power by providing ramp rate limits. 

Furthermore, it is noteworthy that the system also satisfies 

the power balance constraint. The total power generation  

(2659.0475 MW) meets the total demand (2630 MW) 

and the loss on the line (29.0475 MW). 

The statistical results for 15-unit system including the 

best, the worst, the median, the mean cost and the standard 

deviation of the proposed algorithm and various algorithms 

documented in the literature have been given in Table 4. 

According to the results presented in Table 4, the EFO 

algorithm recommended in this study achieves a best cost 

compared to various methods in the literature when solving 

the ELD problem on the 15-unit test system. 

 

 

Table 3. The outcomes for optimal generation scheduling 

with the data of minimum/maximum generating values and 

POZ of each generator for 15-unit system 

Unit 
Generation 

(MW) 

Px,min 

(MW) 

Px,max 

(MW) 
POZ (MW) 

1 455 10.1 671  

2 379.9613 10.2 574 
[185 255], [305 335], 

[420 450] 

3 130 8.8 374  

4 130 8.8 374  

5 169.9064 10.4 461 
[180 200], [305 335], 

[390 420] 

6 459.9839 10.1 630 
[230 255], [365 395], 

[430 455] 

7 429.9594 9.8 548  

8 75.4553 11.2 227  

9 58.6954 11.2 173  

10 155.1383 10.7 175  

11 79.9726 10.2 186  

12 79.9749 9.9 230 [30 40], [55 65] 

13 25 13.1 225  

14 15 12.1 309  

15 15 12.4 323  

Loss (MW): 29.0475, Cost ($): 32692.30, Total power generation (MW): 

2659.0475 MW 
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Table 4. Statistical results for 15-unit system 

Algorithm Best Worst Median Mean Standard Deviation 

EFO  32692.30 33041.86 32982.51 32967.23 60.32 

EO [42]  32701.18 32701.51 NIA 32701.31 NIA 

ABC [43]  32787.836 NIA NIA 32791.5366 NIA 

TLBO [44]  32697.22 32697.22 NIA 32697.22 0 

MPSO-GA [45]  32702 32755.19 NIA 32701.31 NIA 

EO-SCA [46]  32700.51 32701.05 NIA 32702.74 NIA 

PSOSIF [47]  32706.88 32709.92 NIA 32707.79 3.04 

GAAPI [37]  32732.95 32756.01 NIA 32735.06 NIA 

FA [48]  32704.45 33175.00 NIA 32856.10 NIA 

EPSO [49]  32704.83 32762.01 NIA 32725.37 NIA 

IAEDP [50]  32698.20 32823.78 NIA 32750.22 29.2989 

EMA [51]  32704.45 32704.45 NIA 32704.45 NIA 

GABC [52]  32706.66 32706.81 NIA 32706.69 0.035838 

CCSO [53]  32706.64 32706.64 NIA 32706.64 0.0007 

CSO [53] 32709.36 32722.55 NIA 32712.49 4.56 

BF-NM [54]  32784.5024 NIA NIA 32976.81 85.77 

DSPSO-TS [55]  32715.06 32730.39 NIA 32724.63 8.4 

TS [55]  32917.87 33245.54 NIA 33066.76 66.82 

Jaya [38]  32712.6458 32822.9993 NIA 32743.4613 47.0256 

The convergence curves of decision variables with 

iterations for the EFO algorithm and 15-unit system is given 

in Figure 3. 

 

 
Figure 3. Convergence curves of decision variables for 

EFO algorithm and 15-unit system 

 

Upon examining the convergence curves of decision 

variables for EFO algorithm and 15-unit system in Figure 3, 

it can be seen that a majority of the generators achieve 

optimal generating power without reaching the maximum 

iteration number, indicating the fast convergence of the 

proposed algorithm. 

The convergence curve of objective function with 

iterations for the EFO algorithm and 15-unit system is given 

in Figure 4. 

 

 
Figure 4. Convergence curve of fuel cost for EFO 

algorithm and 15-unit system 

 

The fuel cost convergence curve for the EFO algorithm 

and 15-unit system presented in Figure 4 shows that the EFO 

algorithm achieves the lowest objective function in fewer 

iterations, highlighting the efficiency of this proposed 

method. 
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5 Conclusion 

The ELD problem is crucial in power system planning 

and operational scheduling. Its primary aim is to minimize 

power generation costs while meeting load demands. 

Numerous methods and algorithms have been developed 

over time to address this challenge. In this article, a new 

approach called the EFO is recommended for the ELD 

problem. The algorithm considers various factors such as 

line losses, POZ limits, ramp rate constraints, generator 

capacity limits (both maximum and minimum). To verify its 

efficacy, the EFO algorithm is evaluated on various test 

systems consisting of both 6-unit and 15-unit configurations. 

In conclusion, the EFO algorithm used in this study offers 

a superior solution to the ELD problem for 6-unit and 15-unit 

test systems. It generates a generation scheduling with lower 

cost compared to other techniques and algorithms. The EFO 

algorithm proves to be efficient and effective in solving the 

ELD problem, providing a lower cost generation scheduling. 

The results indicate that the proposed algorithm consistently 

yields superior solutions compared to established 

optimization techniques documented in the literature. The 

convergence curves clearly demonstrate that the EFO 

exhibits favorable convergence characteristics, converging 

rapidly and efficiently.  

In the future work, the proposed EFO algorithm can be 

implemented on large test systems such as IEEE 118-bus test 

system and the proposed approach can be used for solving 

other optimization problems in the area of power systems. 
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