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Abstract 

Site exploration, characterization and prediction of soil properties by in-situ test are key parts of a 

geotechnical preliminary process. In-situ testing is progressively essential in geotechnical engineering to 

recognize soil characteristics alongside. In this study, radial basis neural network (RBNN) model was 

developed for estimating standard penetration resistance (SPT-N) value. In order to develop the RBNN 

model, 121 SPT-N values collected from 13 boreholes spread over an area of 17 km2 of Izmir was used. 

While developing the model, borehole location coordinates and soil component percentages were used as 

input parameters. The results obtained from the model were compared with those obtained from the field 

tests. To examine the accuracy of the RBNN model constructed, several performance indices, such as 

determination coefficient, relative root mean square error, and scaled percent error were calculated. The 

obtained indices make it clear that the RBNN model has a high prediction capacity to estimate SPT-N. 

 

Keywords— Generalized regression neural network, In-situ test, Radial basis neural network, Standard 

penetration test 

 

 

1 Introduction 
The complex geotechnical behavior and uncertainty 

of soil effect are a challenge for a simplified geotech-

nical model [1, 2]. In the case of nonlinear modeling, 

phase of using traditional modeling techniques of 

multiple regression in predicting the standard pene-

tration resistance (SPT-N) in association with inde-

pendent variables such as soil types and borehole 

coordinates cannot be performed and thus the devel-

opment of a comprehensive model for the estimation 

of SPT-N is almost impossible for this technique [1, 

2]. For site exploration, in situ tests are used to delin-

eate soil stratigraphy and determine its properties for 

geotechnical analysis and design. 

 

The penetration resistances are used to classify and 

characterize subsoils. Substantial data can be ob-

tained economically in shorter time using in situ 

devices, such as the standard penetration test (SPT) 

and cone penetration test (CPT). Some geotechnical 

design parameters of the soil are associated with the 

SPT. In construction projects, it is common to use 

SPT for the preliminary soil investigation.  
 

SPT is a commonly used method of investigating soil 

properties such as bearing capacity, liquefaction and 

site characterization. The test is applicable to a 

widely ranged soil conditions. With the advance of 

modern geotechnical engineering the actual driving 

energy of the SPT entering the rods was measured 

easily as described in ASTM D4633 by energy meas-

urement devices. SPT-N was normalized to an over-

burden pressure of 100 kPa as part of semi-empirical 

procedure using the correction factor (CN) proposed 

by Kayen et al. [3]. The CN value was limited to a 

maximum value of 1.70 as suggested by Youd et al. 
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[4] and this factor commonly calculated from the 

following Eq.(1.1): 
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where, 𝜎𝑣0
′  is effective overburden pressure and 𝑃0 is 

100 kPa [3]. Field SPT-N value was corrected for CN 

using Eq.(1.2) proposed by Peck et al. [5] for meas-

ured values used in GRNN model: 

𝑁𝑐𝑜𝑟 = 𝑆𝑃𝑇𝑁 × 𝐶𝑁                            (1.2) 
 

The negative pore pressure of the SPT sampler into 

saturated sand and silts may result in higher shear-

ing resistance. Therefore, Ncor values greater than 15 

and under ground water level, obtained from equa-

tion (2) were corrected using the Eq.(1.3) [6]: 

𝑁𝑐𝑜𝑟
′ = 15 + 0.5 × (𝑁𝑐𝑜𝑟 − 15)          (1.3) 

 

In the present study, radial basis neural network 

(RBNN) model was developed for estimating stand-

ard penetration resistance (SPT-N) value. In order to 

develop the RBNN model, a detailed study conduct-

ed for the examination of the geological and ge-

otechnical behavior of Zeytindagi Formation soil 

Izmir-Manisa State Road [1, 7], including the SPT-N 

value of soils and their borehole location coordinates 

with soil percentages of different 121 data points, 

was used.  

 

The descriptive statistics of the data are given in Ta-

ble 1. Moreover, the determination coefficient (R2) the 

relative root mean square error (RRMSE), and scaled 

relative error (Er) indices were utilized to estimate 

the performance of the RBNN model developed.   
 

Table 1. Descriptive Statistics for Collected Field Data of 

SPT-N [1] 

 Min. Max. Mean Std. Deviation 

X 3 44 35.08 17.08 

Y 3 44 11.85 17.07 

Z 0.50 12 5.11 2.32 

Gravel (%) 0 67 13.28 17.61 

Sand (%) 3 72 32.18 16.18 

Silt (%) 3 66 32.44 16.49 

Clay (%) 0 67 22.27 16.61 

SPT-N 1 50 19.45 14.56 

 

 

2 Case Study Area: Gediz Basin  

In this work, a detailed study [1, 7] of the geological 

and geotechnical behavior of Zeytindagi Formation 

soil was used and given briefly as follows. The to-

pography and geologic history of the Zeytindağı 

Formation slope influences the behavior of the Mani-

sa-Izmir State Road.  

 

The roadway is located near the crest of an ancient 

valley slope and is situated below the top of a plain 

between Izmir and Bornova fault zone. Theses slopes 

consist of ancient landslides created by the unpre-

dictable earthquake effects in the post glacial period. 

Gediz Basin is bordered in the north by the Bornova 

Fault and in the south by the İzmir Fault. Sedimen-

tary rocks with ages ranging from Lower Miocene to 

middle Miocene are exposed in İzmir and its envi-

rons.  The Miocene aged deposits in the test area 

were affected by two faults with the developed allu-

vium deposits.  

 

Historical earthquakes and morphological traces of 

the faults show that the Bornova and İzmir faults are 

active faults [1, 7]. 

 

 
Figure 1. Geological setting, morphology and Location of 

the Gediz Basin area [7] 

 

3 Radial Basis Neural Network 
Artificial Neural Networks (ANNs) governs the 

learning of the connection between input and output 

variables in a way similar to the human brain, with-

out preconditioned or optional assumptions [8]. The 

human brain resembles systems of learning, associa-

tion, classification, making generalizations, estima-
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tion and optimization were provided by ANN as an 

information system [9]. The limitations of various 

numerical modeling techniques and fails of many 

mathematical models for highly non-linear behavior 

of soils are also considered to be complex, time-

consuming and not always practical for geotechnical 

approaches. In geotechnical engineering problems as 

with many areas of civil engineering, ANN has been 

used with great accuracy to predict and model the 

field tests.  

 

Radial basis neural networks (RBNNs) are feedforward-

type ANNs, which have universal approximation 

properties [9]. RBNN utilizes a clustering process 

with different nonlinear activation functions that are 

locally tuned to cover a region of the input space 

[10]. This process is repeated until the prediction 

error is small enough, as defined by the spread fac-

tor. Then the testing phase is applied to show the 

capability of networks for data generalization. 

 

RBF can be used to solve high-dimensional approxi-

mation problems. The training data was interpolated 

by the multi-dimensional space to fit the best curved 

surface [11]. RBNN are generally divided into three 

layers [12] as shown in Fig.2. Several origins called 

perception units were connected by the input layer, 

of the external environment [12]. A number of radial 

basis function units (nh) and bias (bk) were situated in 

the hidden layer of RBNNs [13].  

 

The output layer is activated by the linear activation 

of the input layer [12]. Any iterative learning is re-

quired in radial basis networks. [13]. RBNN model is 

very faster than the well-known back-propagation 

neural network as a characteristic behavior. RBNN 

has also advantages over conventional models such 

higher reliability and smaller error foundings [14]. 

The overall block diagram of the RBNN in its adap-

tive form for SPT-N estimation is also depicted in 

Figure 2. 

 

The radial basis function (RBF) is characterized by 

Gaussian function constituted by center (vj) and 

width (rj). The Euclidean distance of the RBF was 

measured in the hidden layer using following equa-

tion [13]. 

 

 
Figure 2. RBNN model architecture for SPT-N estimation 
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where hj denotes the output of the jth unit of RBF. The 

center and width of the RBF are shown by cj and rj, 

respectively. The following equation is the output 

layer of the function [13]. 
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where yk is the kth output unit for the input vector x, 

wkj is the weight connection between the kth output 

unit and the jth hidden layer unit, and bk is the bias.   

 

The expected yk output parameter of the corre-

sponding x, is updated by minimizing some measure 

of discrepancy between these parameters. 
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The function approximation can be extended as 

Eq.3.4 for no ≥ 1. 
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Considering  x  as radial basis function, the re-

sponse of the network is shown in Eq. (3.5). 
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hj represents the response of the radial basis function 

located at the jth unit to the input vector x, at that 

rate; 
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The RBNN is introduced with x and is formed by the 

response of the radial basis function located at the cj, 

1≤ j ≤c in Eq.(3.6).The forward subset selection routine 

of training set was utilized in order to optimize the 

centers. A least-squares solution method was applied to 

adjust the connection weight between output layer and 

hidden layer following the selection of optimum values 

of centers of RBF. A successful utilization of an opti-

mum spread value obtained the most definite simula-

tion results to minimize model prediction error. 

 

4. Radial Basis Neural Network Model 
In order to develop the RBNN model, 121 SPT-N 

values collected from 13 boreholes spread over an 

area of 17 km2 of Izmir, Turkey [1, 7], including fine-

grained deposits of mostly silt and clay with weath-

ered gravel and sand, was used. In the RBNN model, 

the percentages of sand (S), silt (M), gravel (G), and 

clay (C) particle size of the present soil and X, Y, and 

Z coordinates of boreholes were used as input pa-

rameters and SPT-N used as one single output pa-

rameter.  

 

The input-output data of the RBNN model were 

scaled to lie between 0 and 1, by using Eq. (4.1).  
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where, the normalized value is defined by xnorm, the 

actual value is characterized by x, finally xmax and xmin 

are the maximum and the minimum values, respec-

tively. The available data was then divided into two 

subsets as a common practice: A training set to con-

struct the neural network model, and an independ-

ent testing set to prove the model performance in the 

deployed environment. In total, 80 % of the data (i.e., 

96 data sets), 20 % (i.e., 25 data sets) were used for 

training and testing sets, respectively. Finally, the 

predicted SPT-N values from RBNN model was 

compared with the actual measured SPT-N values 

using the performance indices, namely, the coeffi-

cient of correlation, R2, given by Eq. (4.2), the relative 

root mean square error, RRMSE, given by Eq. (4.3) to 

assess the performance of the RBNN model devel-

oped in this study. 
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where y is the measured value; ŷ is the predicted 

value; y  is the mean of the measured data; and N is 

the number of the sample. 

 

Very few user decisions are required while using 

RBNN model. The selection of an appropriate smo-

othing factor is only required to train the inputs. For 

each input combination, the optimum spread for the 

RBNN model was determined according to the MAE 

criterion. In order to minimize model prediction 

error, the variation of spread parameter with mean 

absolute error (MAE) was examined, which is given 

in Fig.3. The spreads were found to vary between 

0.01 and 0.04. It appears from the figure that the 

RBNN has a minimum MAE value with the spread 

value of 0.04. 

 

 
Figure 3. The effect of spread parameter on RBNN perfor-

mance 
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5 Results and Discussion 
The comparison between the obtained standard pen-

etration test number (SPT-N) values and the predict-

ed SPT-N values from the RBNN model is shown in 

Figures 4 and 5. It can be noted from these figures 

that predicted SPT-N values from the RBNN model 

are found to be in a perfect agreement with the 

measured SPT-N values, as R2 of 0.9993 and 0.9848 

for training and testing, respectively.  

 

  
Figure 4. The comparison of the measured versus predict-

ed SPT-N values for training samples of RBNN 

 
Figure 5. The comparison of the measured versus predict-

ed SPT-N values for testing samples of RBNN. 

 

Erzin and Tuskan [1] developed a generalized re-

gression neural network (GRNN) model by using the 

same input and output parameters for the prediction 

of the SPT-N value. The measured standard penetra-

tion test number (SPT-N) values obtained from field 

test were compared with the predicted SPT-N values 

from the GRNN model in Figs. 6 and 7. It can be no-

ticed from these figures that predicted SPT-N values 

from GRNN model are in good agreement with the 

obtained SPT-N values, as R2 of 0.9738 and 0.9348 for 

training and testing, respectively.   

 
 

Figure 6. The comparison of the measured versus predict-

ed SPT-N values for training samples of GRNN 

 
Figure 7. The comparison of the measured versus predict-

ed SPT-N values for testing samples of GRNN 

 

Moreover, different methods of evaluation of model 

performance have been utilized to demonstrate per-

fect predictability and reliability of the developed 

ANN models. 

0

0,2

0,4

0,6

0,8

1

1,2

0 0,2 0,4 0,6 0,8 1 1,2

P
re

d
ic

te
d

  S
P

T-
N

Measured SPT-N

R2 = 0.9993

0

0,2

0,4

0,6

0,8

1

1,2

0 0,2 0,4 0,6 0,8 1 1,2

P
re

d
ic

te
d

 S
P

T-
N

Measured SPT-N

R2 = 0.9848

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30 35 40 45 50

P
re

d
ic

te
d

 S
P

T-
N

Measured SPT-N 

R2 = 0.9738

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30 35 40 45 50

P
re

d
ic

te
d

 S
P

T-
N

Measured SPT-N

R2=0.9348



 
CBÜ Fen Bil. Dergi., Cilt 13, Sayı 2, s 433-439                                                                              CBU J. of Sci., Volume 13, Issue 2, p 433-439 

 

438 

Table 2 shows performance of the RBNN model de-

veloped in this study and GRNN model developed 

by Erzin and Tuskan [1]. The RBNN exhibited higher 

prediction performance than GRNN model based on 

the performance indices in Table 2. 

 

Table 2. Performance indices (R2 and RRMSE) of the 

GRNN and RBNN models 

Model 
Data 

R2 

(%) 
RRMSE 

GRNN 

Training 

set 
97.38 0.04 

Testing 

set 93.48 0.08 

RBNN 

Training 

set 99.93 0.02 

Testing 

set 98.48 0.03 

 

A graphic representation of the comparative accura-

cy of the RBNN and GRNN models are shown by 

plotting the scaled relative error (Er), given by Eq. 

(5.1), versus scaled cumulative frequency for the 

GRNN and RBNN models, as shown Figs. 8 and 9. 

 

100(%)E
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where SPTNpi and SPTNmi are the predicted and the 

measured  standard penetration resistance. 

 
Figure 8. The  scaled relative error versus scaled cumula-

tive frequency for RBNN model 

 

It is seen from Fig. 8 that about 89% of SPT-N value 

predicted from the RBNN model fall into ± 5% of the 

Er, yielding a better estimate for the SPT-N value. It 

is observed from Fig. 9 that 82% of SPT-N value pre-

dicted from the GRNN model fall into ± 5%. Wide 

ranges of prediction were observed by RBNN model 

in comparasion to GRNN model. 

 
Figure 9. The scaled relative error versus scaled cumulative 

frequency for GRNN model 

 

These results indicate that the RBNN developed were 

superior to the GRNN model in predicting the stand-

ard penetration resistance (SPT-N).  

 

6. Conclusion 

In this study, the performance of the radial basis neural 

network (RBNN) model to predict the standard pene-

tration resistance (SPT-N) has been investigated and 

compared.  For this purpose, a RBNN model was 

developed by using the data collected from 13 bore-

holes spread over an area of 17 km2 of Izmir. The SPT-N 

values estimated from the RBNN model were com-

pared with the experimental results taken from the 

study area.  The results indicated that the predicted 

values from the RBNN model are found to be very 

close to the measured values.  

 

The prediction performance of the RBNN model 

developed in this study and the GRNN model devel-

oped by Erzin and Tuskan [1] by utilizing the same 
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data used in this study was compared and validated 

in terms of determination coefficient (R2), the relative 

root mean square error (RRMSE), and scaled relative 

error (Er).  The computed indices make it clear that 

the constructed RBNN model was able to predict 

standard penetration resistance (SPT-N) quite effi-

ciently and outperformed the GRNN models. Our 

results suggest that the RBNN algorithm is more 

applicable compare to the GRNN algorithm in treat-

ment such kind of nonlinear data sets. Thus, the de-

veloped RBNN model can be used satisfactorily to 

predict the SPT-N value from their soil gradation 

properties and borehole coordinates as a rapid inex-

pensive substitute for laboratory techniques. To min-

imize the uncertainties encountered during the soil 

engineering projects, RBNN model could be utilized 

as a useful machine learning tool. Therefore, the us-

age of the RBNN may supply new approaches and 

methodologies, and minimize the potential incon-

sistency of correlations.  
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