
DEU FMD 26(76) (2024) 40-48

DOI:10.21205/deufmd. 2024267606 Geliş Tarihi / Received: 22.02.2023

Kabul Tarihi / Accepted: 25.05.2023
Atıf şekli / How to cite:

O (2024). Quantitative Performance Analysis of BLAS Libraries on GPU Architectures. DEUFMD, 26(76), 40-48.

RESEARCH ARTICLE / ARAŞTIRMA MAKALESI

Quantitative Performance Analysis of BLAS Libraries on GPU Architectures

BLAS Kütüphanelerinin GPU Mimarilerindeki Nicel Performans Analizi

Işıl Öz

İzmir Yüksek Teknoloji Enstitüsü, Bilgisayar Mühendisliği, İzmir, TÜRKİYE

Corresponding Author / Sorumlu Yazar *: isiloz@iyte.edu.tr

Abstract

Basic Linear Algebra Subprograms (BLAS) are a set of linear algebra routines commonly used by machine learning applications and
scientific computing. BLAS libraries with optimized implementations of BLAS routines offer high performance by exploiting parallel
execution units in target computing systems. With massively large number of cores, graphics processing units (GPUs) exhibit high
performance for computationally-heavy workloads. Recent BLAS libraries utilize parallel cores of GPU architectures efficiently by
employing inherent data parallelism. In this study, we analyze GPU-targeted functions from two BLAS libraries, cuBLAS and MAGMA,
and evaluate their performance on a single-GPU NVIDIA architecture by considering architectural features and limitations. We collect
architectural performance metrics and explore resource utilization characteristics. Our work aims to help researchers and
programmers to understand the performance behavior and GPU resource utilization of the BLAS routines implemented by the
libraries.

Keywords: Basic linear algebra subprograms, Graphics processing units, Performance analysis

Öz

Temel Lineer Cebir Alt Programları (BLAS), makine öğrenmesi ve bilimsel hesaplama tarafından yaygın olarak kullanılan lineer cebir
rutinleri içermektedir. BLAS rutinlerinin optimize edilmiş uygulamalarına sahip BLAS kütüphaneleri, bilgisayar sistemlerindeki
paralel yürütme birimlerinden yararlanarak yüksek performans sunmaktadır. Çok sayıda çekirdeğe sahip olan grafik işlemci birimleri,
hesaplama açısından ağır iş yükleri için yüksek performans sergilemektedir. Modern BLAS kütüphaneleri, veri paralelliğini kullanarak
GPU mimarilerini verimli bir şekilde kullanmaktadır. Bu çalışmada, iki BLAS kütüphanesi (cuBLAS ve MAGMA) fonksiyonları analiz
edilmiş, mimari özellikleri ve sınırlamaları göz önünde bulundurularak NVIDIA GPU mimarileri üzerindeki performansları
değerlendirilmiştir. Performans metrikleri toplanmış ve kaynak kullanım özellikleri tespit edilmiştir. Çalışmamız, araştırmacıların ve
programcıların BLAS rutinlerinin performans davranışını ve GPU kaynak kullanımını anlamalarına yardımcı olmayı amaçlamaktadır.

Anahtar Kelimeler: Temel lineer cebir alt programları, Grafik işlemci birimleri, Performans analizi

1. Introduction

With a massive number of processing units, GPU architectures
offer performance improvements for applications from various
domains, such as high-performance computing workloads [1–3],
deep learning training and inference computations [4,36], safety-
critical software for autonomous vehicles [5,35], and avionics
systems [6]. Specifically, Deep Neural Networks (DNN) require
high computational resources to enable parallel execution for
their huge data-parallel operations. Essentially, neural networks
include heavy linear algebra operations, mostly matrix
multiplications, by considering different layers in the network.
GEMM (general matrix multiplication) operation constitutes a
substantial part of the convolutional layer computations in
different CNN implementations [34,37,38]. Basic Linear Algebra
Subprograms (BLAS) libraries offer high-performance vector and
matrix operations by utilizing parallel execution units on both
CPU and GPU architectures [7]. Deep Learning (DL) frameworks
like PyTorch, Caffe, and TensorFlow rely on high-performance
BLAS libraries exploiting parallel GPU cores to accelerate the
training process [8].

Most BLAS libraries conform to the BLAS interface, revealing
standard functions that enable library users to develop programs

without worrying about the implementation-specific details.
While offering a generic interface to the developers, BLAS
libraries are implemented by considering various design and
optimization options. While CUDA-enabled libraries [9,10] like
cuBLAS exploit the computational resources of NVIDIA GPUs,
there are implementations [11,12] like rocBLAS that are written
by HIP programming language and optimized for AMD GPUs. On
the other hand, MAGMA (Matrix Algebra for GPU and Multicore
Architectures) [13] provides high-level interfaces by supporting
different CPU (like Intel MKL (Math Kernel Library) or
OpenBLAS) or GPU (like cuBLAS or hipBLAS) backends while it
offers its own implementations of some routines for better
optimization. Modern BLAS libraries [14] support or are
optimized for multi-GPU execution to exploit more parallelism.
Additionally, for portability, open-source libraries like CLBlast
[15] provide optimized OpenCL (Open Computing Language)
routines for a wide variety of devices.

In this work, we analyze two BLAS libraries, including cuBLAS
[10] and MAGMA [13], and evaluate their performance on a
single-GPU NVIDIA architecture by considering architectural
constraints. Although there are studies comparing CPU and GPU
performance of BLAS libraries [16,17] or comparing the

https://orcid.org/0000-0002-8310-1143

DEU FMD 26(76) (2024) 40-48

 41

performance of GPU-based BLAS libraries for specific problems
[18], we evaluate complete GPU-optimized Level-3 and one
Level-2 routines with high complexity from both libraries by
profiling their architectural features and limitations and analyze
the computing efficiency of different subroutines from different
libraries.

The main contributions of our work are as follows:

• We conduct a detailed experimental analysis for high-
complexity BLAS routines from two BLAS libraries on a
modern GPU device.

• We identify the most time-consuming computations,
i.e., kernel functions, of the corresponding routines to
point out the potential performance exploration.

• We collect architectural performance metrics about the
main kernel functions of the corresponding routines.

• Based on our profiling results, we evaluate and compare
the performance of the library functions according to
the computation and memory resources of the GPU
device.

Our main goal is to present a quantitative analysis to researchers
and programmers who are involved in scientific computing and
developing machine learning systems.

The remainder of this paper is organized as follows: Section 2
presents some background on BLAS routines and GPU
architectures. We explain our methodology in Section 3. Then the
experimental evaluation is presented in Section 4 and the related
discussion is given in Section 5. Section 6 presents the existent
performance comparison studies for BLAS libraries. Finally,
Section 7 summarizes the work with some conclusive remarks.

2. Background

2.1. Basic linear algebra subprograms

Basic Linear Algebra Subprograms (BLAS) provide routines as an
Application Programming Interface (API) for performing vector
and matrix operations. The BLAS routines are classified into
three levels based on the degree of the polynomial in the
complexities of operations:

Level 1 defines scalar, vector, and vector-vector operations. As
an example, it includes a generalized vector addition (axpy, a x
plus y):

𝑦 ← 𝛼𝑥 + 𝑦 (1)

Level 2 defines matrix-vector operations. As an example, it
includes a generalized matrix-vector multiplication (gemv):

𝑦 ← 𝛼𝐴𝑥 + 𝛽𝑦 (2)

Level 3 defines matrix-matrix operations. As an example, it
includes a general matrix multiplication (gemm):

𝐶 ← 𝛼𝐴𝐵 + 𝛽𝐶 (3)

Level 1 BLAS routines take linear time, O(n), Level 2 routines
quadratic time, and Level 3 routines cubic time [19]. Modern
BLAS libraries provide routines from all three levels. The
libraries include single-precision and double-precision versions
for both real and complex numbers. While the earlier
implementations only consider dense vectors and matrices,
modern libraries also concentrate on sparse matrices.

The abstract definition of BLAS routines allows customization for
high performance by exploiting architectural features in different
computing systems. Due to the data-parallel nature of the

computations, especially SIMD execution units offer high-
performance benefits. Both vector instructions in CPU systems
and SIMD executions in GPU devices improve the performance of
BLAS routines. While some BLAS libraries only include CPU-
based implementations [20,21], others exploit parallel cores on
GPU architectures as GPU devices become more available and
popular [10,12,13].

In this work, we focus on Level 2 and Level 3 routines with higher
complexities and evaluate the performance of GPU-based
libraries by considering their GPU resource utilization.

2.2. GPU architectures

With a large number of processing units, GPU architectures offer
high performance for applications from various domains. As
illustrated in Figure 1, a modern GPU architecture contains
hierarchical computational and memory units. Each core in a core
cluster is responsible for single-instruction-multiple-thread
(SIMT) execution. While the cores inside the same core cluster
(Streaming multiprocessor-SM) have access to the scratchpad
memory (shared memory or L1 cache), all the cores can
communicate through the L2 cache structure via interconnect.
DRAM-based global device memory maintains larger but
relatively slower data access for all threads executing in the
device [22]. Not only does a modern GPU device include general-
purpose cores but also special function units (SFU) for fast
transcendental function computations as well as tensor cores for
efficient matrix multiplications. CUDA (Compute Unified Device
Architecture) is a parallel programming model and application
programming interface (API) that enables programmers to
develop parallel software for general purpose processing on
GPUs.

Figure 1. Modern GPU architecture.

3. Methodology

In this work, we evaluate two main BLAS libraries with GPU
implementations. Specifically, we focus on Level 2 and Level 3
routines, which have higher computation requirements. To
understand the GPU utilization of the target routines, we collect
architectural performance metrics and compare the resource
utilization of the most time-consuming parts of the computations.
In our analysis, we investigate both SIMD unit and tensor core
utilization and memory resource usage.

3.1. BLAS libraries

We consider two commonly used GPU-supporting BLAS libraries
to examine in our performance evaluation study: cuBLAS [10]
and MAGMA [13].

cuBLAS library, developed by NVIDIA, provides BLAS functions
that are well-optimized for NVIDIA GPUs. Many machine learning
frameworks (e.g., TensorFlow, Keras) rely on the cuDNN library
[23], which utilizes the same kernel functions implemented as
part of the cuBLAS library.

DEU FMD 26(76) (2024) 40-48

 42

MAGMA (Matrix Algebra for GPU and Multicore Architectures) is
an open-source project developed for hybrid multicore and
multi-GPU systems. Based on LAPACK [24], which utilizes the
shared-memory vector and parallel processors, MAGMA allows
programmers to easily port their software from LAPACK to
MAGMA to take advantage of the modern heterogeneous
architectures.

Besides standard implementations, both libraries include
batched operations by executing the multiple small kernels in
parallel CUDA streams, multi-GPU executions for higher
performance, and mixed and low precision executions offered by
NVIDIA GPU functional units.

3.2. BLAS routines

While there are several BLAS routines in three levels (as given in
Section 2.1), we focus on one main Level 2 function (GEMV) and
five Level 3 functions (GEMM, SYMM, SYRK, TRMM, TRSM) in our
evaluation. Since the computational complexity is high, especially
in Level 3 matrix-matrix routines, we include those specific
operations to examine their performance in our target massively
parallel GPU device. The routines in our evaluation are as follows:

GEMV performs matrix-vector multiplication:

𝒚 = 𝛼𝑨𝒙 + 𝛽𝒚

where A is an m by n matrix, x and y are vectors, and α and β are
scalars.

GEMM performs matrix-matrix multiplication:

𝑪 = 𝛼𝑨𝑩+ 𝛽𝑪

where A, B, and C are an m by k, k by n, m by n matrices, and α
and β are scalars.

SYMM performs symmetric matrix-matrix multiplication:

 𝑪 = 𝛼𝑨𝑩+ 𝛽𝑪

where A is an n by n symmetric matrix, B and C are m by n
matrices, and α and β are scalars.

SYRK performs symmetric rank-k update to a matrix C:

 𝑪 = 𝛼𝑨(𝑨)𝑻 + 𝛽𝑪

where C is an n by n symmetric matrix, A is an n by k matrix, and
α and β are scalars.

TRMM performs triangular matrix-matrix multiplication, where
one input matrix is triangular, and one input matrix is general,
and TRSM performs solving triangular matrix with multiple
right-hand sides.

We evaluate both single-precision and double-precision
functions provided by cuBLAS and MAGMA libraries.
Additionally, for GEMM operation, we execute the half-precision
routines, which utilize tensor cores in the target GPU device.

3.3. Performance metrics

To understand the performance of target operations running on
GPU architectures and perform a comparison study, we consider
not only kernel execution times but also architectural metrics
provided by profiling tools. Since we are interested in
performance analysis on GPU devices at the chip level to see if any
specific architecture features are responsible for the
performance difference, we collect information for the kernel
executions. We do not include the data transfer time from CPU
memory to GPU global memory (HtoD) or GPU global memory to

CPU memory (DtoH). The performance metrics collected from
kernel executions and profiling tools are as follows:

FLOPS: Since BLAS routines contain intensive floating-point
calculations, we report floating-point operations per second
(FLOPS), which is a measure of computer performance.

Compute resource utilization: We analyze how the target
routines utilize the compute resources available in GPU devices.
We consider compute resources of the streaming
multiprocessors (SM) by including both high-level SM utilization
values and detailed pipeline utilization values per each pipeline,
such as LSU (Load-Store unit) and ALU (Arithmetic logic unit).

Memory resource utilization: We analyze how the target
routines utilize the memory resources available in GPU devices.
While GPU architectures include a hierarchical memory structure
with different levels, we consider the throughput values for
global memory. Moreover, our pipeline utilization analysis
demonstrates the usage of load-store units, which is higher for
memory-bound operations.

Warp occupancy: Warp occupancy is a measure of thread
parallelism in a GPU program, which is defined as the number of
warps running concurrently on a multiprocessor divided by the
maximum number of warps that can run concurrently. Since the
available registers and shared memory are shared among all
active warps on a streaming multiprocessor, the number of active
warps can be limited by the register and shared memory usage of
the threads. The higher register or shared memory usage in each
thread limits the number of active warps running simultaneously
on a streaming multiprocessor. While higher occupancy does not
always reveal higher performance, occupancy values provide
information about the device limitations and guide the
programmer for register/memory usage.

Table 1. Salient characteristics of GPU device used in our
experiments.

Property Value

CUDA Compute Capability 7.5

Global memory size 3914 MB

Multiprocessors 14 MP

CUDA cores per MP 64

GPU Max Clock rate 1455 MHz

Memory Clock rate 4001 MHz

Memory Bus Width 128-bit

L2 Cache Size 1048576 bytes

Max Warps per MP 32

Max Thread Blocks per MP 16

Max Threads per MP 1024

Registers per MP 65536

Shared memory per MP 65536

4. Performance Evaluation

We evaluate the performance of different routines in cuBLAS and
MAGMA libraries on our mobile workstation with an NVIDIA
T1000 GPU device, a Turing architecture [25] professional

DEU FMD 26(76) (2024) 40-48

 43

Table 2. Properties of kernel functions in single-precision routines.

BLAS routine Function name Kernel name Grid size Block size Threads Cycles

GEMV magmablas_sgemv sgemvn_template_kernel_fermi 98 512 50,176 482,099

 cublasSgemv gemv2N_kernel 400 128 51,200 479,169

GEMM magmablas_sgemm sgemm_kernel_fermi_nn 1,089 256 278,784 56,212,094

 cublasSgemm volta_sgemm_128x128_nn 625 256 160,000 37,636,048

SYMM magmablas_ssym hemm_template_ll_kernel 9,604 256 2,458,624 182,148,002

 cublasSsym magma_lds128_strmm_kernel (2) 2,401 128 307,328 30,964,954

SYRK magmablas_ssyrk volta_sgemm_64x32_sliced1x4_nt 656 256 167,936 5,889,255

 cublasSsyrk volta_sgemm_128x128_lower_nt 625 256 160,000 19,417,160

TRMM magmablas_strmm trmm_template_lNx_kernel (98) 98 1024 100,352 34,142

 cublasStrmm trmm_left_kernel_core (24) 98 512 50,176 262,627

TRSM magmablas_strsm volta_sgemm_128x32_nn (31) 98 256 25,088 106,655

 cublasStrsm volta_sgemm_32x128_nn (5) 850 256 217,600 13,963,232

mobile graphics card. Our target GPU device, of which the main
features are given in Table 1, can optimize both single-precision
and double-precision calculations and perform tensor
operations. Our platform runs on Ubuntu 18.04 operating system,
with MAGMA version 2.6.2 and cuBLAS version 11.3. We utilize
single-precision and double-precision versions available in the
libraries for BLAS routines. Additionally, we execute half-
precision GEMM routines, which utilize FP16 tensor functional
units in our GPU device.

Firstly, we execute our target BLAS routines and collect GFLOPS
(billion floating-point operations per second) values for the
entire routine execution. Specifically, our experiments consist of
ten executions, where we report the average.

Then, we run the same configurations on NVIDIA Nsight Compute
[26], a kernel profiler for CUDA applications, and collect detailed
performance metrics for each kernel function. Nsight Compute
provides detailed performance metrics and visual
representations for resource usage of CUDA kernels. Based on the
performance metrics explained in the previous section, we
examine compute and memory resource utilization by
considering hardware limitations. We analyze the performance
and resource utilization of the implementations available in both
libraries by discussing the potential bottlenecks.

We note that we perform a precision comparison for the
computations by comparing CPU results and observe a maximum
error of less than e-08.

4.1. Kernel functions in single-precision and double-
precision routines

We execute both single-precision and double-precision BLAS
routines from cuBLAS and MAGMA libraries. The corresponding
functions in the libraries follow a standard naming, such as
cuBLAS has cublasSgemm and cublasDgemm, MAGMA has
magmablas_sgemm and magmablas_dgemm for single-precision
and double-precision GEMM computations, respectively.

Using the Nsight Compute tool, we identify the corresponding
kernel functions and collect their runtime properties, including

thread dimensions and the number of cycles. As a representative
input size, we select 3136 as the matrix/vector dimension and
collect performance metrics for this input. Table 2 and Table 3
present the launch configuration parameters and the cycles for
each kernel in the BLAS routines. While some routines include
only one kernel function (e.g., sgemm_kernel_fermi_nn for single-
precision GEMM routine in MAGMA), the others consist of several
kernel functions in different sizes in terms of thread sizes and
execution time. In the case of multiple kernel functions, either
several light-weight kernels are executed and perform partial
computation or one heavy kernel (e.g., trmm_left_kernel_core in
cublasStrmm routine) is launched multiple times and performs
the main computation.

In Table 2 and Table 3, we put the largest/dominant kernel
functions from each BLAS routine (and the number of kernel
launches in parenthesis if launched more than once). For
instance, there are 18 volta_dgemm_64x64_nn instances in
cublasDtrmm routine (as given in Table 3), each launched with
50,176 threads (784 blocks and 64 threads per block), and each
takes ~120 million cycles. Since multiple instances may take
different cycles, we report the largest instance in tables to include
the most heavy-weight kernel instance. For further investigation,
one can examine the execution of this specific instance.

4.2. GFlops

Before examining the architectural properties and GPU resource
usage of the target BLAS computations, we execute all the
routines with ten different input sizes and collect Gflop values for
the complete execution. We generate the vectors and matrices
randomly to represent dense structures. Figure 2 presents GFlop
values for single-precision and double-precision routines.

We observe substantial differences between cuBLAS and MAGMA
single-precision computations. cuBLAS exhibits much larger
GFlop values, especially for SSYMM and SSYRK operations. On the
other hand, the GFlop values are much closer for double-
precision computations, where the pressure on computational
resources is higher due to higher precision.

DEU FMD 26(76) (2024) 40-48

 44

Table 3. Properties of kernel functions in double-precision routines.

BLAS routine Function name Kernel name Grid size Block size Threads Cycles

GEMV magmablas_dgemv dgemvn_template_kernel_fermi 98 512 50,176 947,981

 cublasDgemv gemvNSP_kernel 196 512 100,352 957,724

GEMM magmablas_dgemm dgemm_kernel_fermi_nn 2,401 256 614,656 1,117,379,580

 cublasDgemm volta_dgemm_128x64_nn 2,450 128 313,600 1,130,253,310

SYMM magmablas_dsym hemm_template_ll_kernel 9,604 256 2,458,624 1,112,063,431

 cublasDsym magma_lds128_dtrmm_kernel 4,802 128 614,656 551,819,169

SYRK magmablas_dsyrk volta_dgemm_128x64_nt (7) 600 128 76,800 185,849,226

 cublasDsyrk volta_dgemm_128x64_lower_nt 1,225 128 156,800 592,198,360

TRMM magmablas_dtrmm volta_dgemm_64x64_nn (91) 196 64 12,544 7,457,654

 cublasDtrmm volta_dgemm_64x64_nn (18) 784 64 50,176 120,024,331

TRSM magmablas_dtrsm volta_dgemm_12_x64_nn (20) 1,127 128 144,256 43,314,307

 cublasDtrsm volta_dgemm_64x64_nn (6) 833 64 53,312 252,359,168

Figure 2. GFlop values for single-precision and double-precision routines.

4.3. Resource utilization

We collect SM and memory utilization values to explain the
performance differences (GFlop values) observed in the previous
section. As stated before, we analyze one instance of the kernel
functions with the largest total number of cycles (given in Table

2 and Table 3). Essentially, all instances of the functions
demonstrate similar utilization values as the indication of the
performance bottleneck.

Figure 3 presents both SM and memory utilization values (out of
100%) for the kernel functions in our consideration. While

DEU FMD 26(76) (2024) 40-48

 45

Table 4. Occupancy metrics for double-precision GEMM kernels.

 cuBLAS MAGMA

Registers per Thread 234 61

Shared memory per Block (bytes) 25088 17024

Threads per Block 128 256

Active Threads per SM Limit (Register) 256 (≤ 65536/234) 1024 (≤ 65536/61)

Active Thread Blocks per SM Limit (S. Memory) 2 (≤ 65536/25088) 3 (≤ 65536/17024)

Active Thread Blocks-Threads per SM 2-256 (2x128) 3-768 (3x256)

Theoretical Occupancy for Each SM 25% (256/1024) 75% (768/1024)

Achieved Occupancy 24.93% 74.65%

computationally-intensive Level-3 computations demonstrate
very high SM utilization values (larger than 90%), especially for
double-precision operations, the memory is the bottleneck for
less intensive Level-2 GEMV routine.

Figure 3. Utilization values for kernel functions in single-
precision and double-precision routines.

Furthermore, we closely look at the compute pipeline utilization
to understand how the kernel functions make use of the
functional units in GPU cores. Figure 4 presents the utilization for
the compute resources of the streaming multiprocessors. In our
diagrams, we include only the highest compute pipelines. Mainly,
single-precision routines utilize LSU and FMA units, and double-
precision routines utilize LSU and FP64 units. LSU stands for
Load Store Unit, which issues load, store, atomic, and reduction
instructions to the first-level cache for memory access
operations. FMA stands for Fused Multiply Add/Accumulate Unit,
which performs FP32 arithmetic (Single-precision floating-point
format), including FADD, FMUL, and FMAD. FP64 represents
double-precision floating-point unit, which is responsible for
FP64 arithmetic (Double-precision floating-point format),
including DADD, DMUL, and DMAD. Additionally, we observe ALU
unit (Arithmetic Logic Unit) utilization, which performs bit
manipulation and logic instructions as well as integer (i.e., IMAD,
IMUL) operations. Since ALU unit utilization gets lower than 20%

Figure 4. Pipeline utilization values for single-precision and
double-precision routines.

DEU FMD 26(76) (2024) 40-48

 46

for most cases and does not give insights about our analysis, we
do not report its values.

While we report the utilization values for both single-precision
and double-precision computations, we focus on the consistent
double-precision values. In parallel to SM and memory utilization
values, Level-3 double-precision routines exhibit large FP64
utilization by spending most of their time in high-precision
floating-point computations. Since double-precision Level-3
BLAS routines require high computation resources, we observe
that they consume all available GPU multiprocessors/cores in our
device with almost 100% SM utilization values.

4.4. Warp occupancy

Occupancy is the ratio of the number of active warps per
multiprocessor to the maximum number of possible active warps.
The higher occupancy does not always mean higher performance,
but reveals the ability of GPU device to have active warps. Even if
the number of threads is large and GPU device offers a large
number of cores, the occupancy can be low due to the
requirements of individual threads, such as number of registers
or shared memory.

We collect occupancy results from NVIDIA Nsight Compute
profiles, which provides a set of metrics that identifies occupancy.
Theoretical Occupancy represents the upper limit for occupancy
due to the kernel launch configuration and the GPU device
capabilities. Achieved Occupancy measures the occupancy during
execution of the kernel. Additionally, we collect details about the
occupancy-limiter factors. Moreover, we focus on double-
precision GEMM routines since they exhibit more consistent and
reasonable executions.

Table 4 presents occupancy limiters and occupancy values for
GEMM kernels in both libraries. We see 25% and 75% occupancy
values for cuBLAS and MAGMA kernels, respectively. By
considering the upper limits of our GPU device multiprocessor
(32 warps, 16 thread blocks, 1024 threads, 65536 registers, and
65536 bytes shared memory per SM as given in Table 1), we can
have 256 active threads (8 warps) and 768 active threads (24
warps) per SM while it is possible to execute 1024 threads (32
warps). While the register and shared memory usage of cuBLAS
threads limit the number of active warps, the shared memory
usage is the limitation for the MAGMA kernel execution.

Even if the kernel functions have diverse occupancy values and
cuBLAS seems to be inefficient in terms of occupancy, we observe
similar performance in terms of cycles (Table 3), GFlop values
(Figure 2), and SM utilization (Figure 3). cuBLAS threads, which
utilize low-latency memory structures like registers and shared
memory, execute faster even if the execution does not involve
many active threads. On the other hand, MAGMA kernel with
more threads utilizes SM resources efficiently and benefits from
the parallel cores in the GPU multiprocessor. Additionally, we
observe no significant difference between theoretical and
achieved occupancy values in the kernel, which emphasizes no
serious imbalance issue in the kernel executions [27].

4.5. Tensor core usage

NVIDIA has introduced Tensor Cores in 2017 with Volta V100
GPUs [28] to accelerate matrix multiplication operations with
dedicated hardware. NVIDIA Tensor Cores present the native
instructions for half-precision matrix multiply operations [29].
They offer shorter execution times for linear algebra methods,
which include matrix operations, by utilizing mixed-precision
arithmetic [30].

Both cuBLAS and MAGMA libraries offer Half-precision General
Matrix Multiply (HGEMM) routines that enable tensor core

utilization: cublasHgemm and magma_hgemm. To observe the
performance of tensor cores, we utilize half-precision GEMM
routines that perform the operations in the tensor core's 16-bit
execution units.

We execute and profile half-precision routines from the libraries
and observe that both routines rely on CUTLASS [31], which is a
collection of CUDA C++ template abstractions for implementing
GEMM operations within CUDA. From our profiling results
obtained from NVIDIA Nsight Compute, we observe that both
cuBLAS and MAGMA executions utilize the same CUTLASS
function, therefore, perform similarly by utilizing Tensor (FP)
units. Since cuBLAS execution utilizes the same CUTLASS kernel
function for the target execution, we only report the MAGMA
values to avoid duplication. Figure 5 presents normalized GFlop
values for half-precision GEMM routine (HGEMM) compared to
double-precision GEMM (DGEMM) with different matrix
dimensions. Both precision reduction in function arguments and
tensor core usage in computation reduce the computation time
for various input sizes. Additionally, Figure 5 presents SM and
memory utilization values collected from NVIDIA Compute for
3136 input size. As discussed in Section 4.3, double-precision
GEMM computations require high computational resources. SM
utilization is the bottleneck, with almost 100% SM usage. Hence,
they are compute-bound. On the other hand, half-precision
GEMM computations neither fully utilize SM cores nor memory
bandwidth for the same number of elements. Since Tensor cores
maintain high performance due to their half-precision
specialized units, they could offer scalable high performance
[32,33].

Figure 5. Normalized GFlop and utilization values for double-
precision vs half-precision.

5. Discussion

While double-precision operations and Level-3 routines with
larger computations utilize computation resources efficiently,
the memory operations become the bottleneck for single-
precision operations and Level-2 routines with less
computations. If we compare cuBLAS and MAGMA routines, they
do not exhibit much difference at computationally-heavy
operations; however, cuBLAS offers higher performance in terms
of GFlops and higher SM utilization for most of the executions.
One can prefer cuBLAS for small-scale operations, if the
computational resources in the target GPU device are relatively
limited. On the other hand, for large-scale DNN operations, which
include heavy GEMM computations, the performance mainly
depends on the parallelism support of the target device other

DEU FMD 26(76) (2024) 40-48

 47

Table 5. Performance comparison studies for BLAS libraries.

Work Libraries Operations Metrics

Dongarra et al. [16]
MKL, OMP (CPU)
CuBLAS, MAGMA (GPU)

Batched GEMM Gflop/s

Li et al. [17] MKL (CPU), CuBLAS (GPU)
DOT, GEMV, GEMM,
TRSV, and TRSM

Execution time

Ganeshan et al. [18] MAGMA and CuBLAS (GPU)
Vector Fitting (QR
decomposition)

Execution time

Our Work MAGMA and CuBLAS (GPU)
All Level-3 and one
Level-2 BLAS routines

Execution cycles, GFlop, SM,
memory, pipeline utilization,
occupancy

than the underlying BLAS library implementation. Especially, the
tensor core execution support, which is specialized for matrix
multiplication operations, gets a key issue to accelerate GEMM
operations.

6. Related Works

BLAS libraries have been utilized by neural network
implementations and general-purpose applications. Additionally,
there are studies comparing CPU or GPU performance of BLAS
libraries.

Dongarra et al. [16] propose a block-interleaved approach for
batched DGEMM operations to improve performance by
considering the data layout of the matrices in the system
memory. The authors perform a comparison study by
considering batched GEMM operations, which include multiple
BLAS operations in parallel on many small matrices, with MKL,
OpenMP, CuBLAS, and MAGMA libraries, and analyze the impact
of the data layout on the performance.

Li et al. [17] present a comparison study between a subset of
BLAS operations from MKL library running on a multi-core CPU
system and cuBLAS library utilizing a many-core GPU
architecture. The authors summarize the implementation and
parallelization details and conduct a performance evaluation by
considering execution time for a variety of matrix sizes.

Ganeshan et al. [18] focus on GPU execution of vector fitting
(GVF) algorithm. After presenting mathematical representation
of the algorithm, the authors execute the codes that are based on
QR decomposition operations. They utilize
magma_dgeqrf_batched and cublas_dgeqrf_batched routines for
the corresponding functionality from MAGMA and cuBLAS
libraries, respectively. The results, based on execution times,
demonstrate higher performance for MAGMA-based execution
for the target GVF algorithm.

Although the previous studies perform comparison analyses by
considering CPU and GPU performance of BLAS libraries, we
focus on GPU executions and perform a detailed performance
analysis for computationally-heavy BLAS routines by considering
architectural metrics and resource utilization. Table 5
summarizes the related performance comparison work and our
work based on the differences including target BLAS libraries,
BLAS operations, and performance metrics used in the
comparison study.

7. Conclusion

In this study, we examine the architectural characteristics of
BLAS routines implemented in cuBLAS and MAGMA libraries. We
execute target routines from both libraries in our target GPU

device and evaluate performance metrics by considering
architectural resource utilization and limitations. We believe that
our quantitative analysis will help researchers and programmers
who utilize library functions to understand target executions and
make decisions.

Our work can be expanded by comparing the BLAS libraries in
different GPU device generations to better understand the effect
of the architectural differences. Additionally, the
implementations of the domain-specific applications based on
different BLAS libraries can be evaluated by comparing the
resource utilization of the target application.

Ethics committee approval and conflict of interest statement

This article does not require ethics committee approval.

This article has no conflicts of interest with any individual or
institution.

References

[1] Y. Wang, A. Davidson, Y. Pan, Y. Wu, A. Riffel, J. D. Owens, 2016. Gunrock:
A high-performance graph processing library on the gpu, ACM SIGPLAN
Notices, 51 (8), 1–12. DOI: 10.1145/3016078.2851145

[2] S. Le Grand, A. W. Götz, R. C. Walker, 2013. Spfp: Speed without
compromise—a mixed precision model for gpu accelerated molecular
dynamics simulations, Computer Physics Communications 184 (2), 374–
380. DOI: 10.1016/j.cpc.2012.09.022

[3] A. Zeni, G. Guidi, M. Ellis, N. Ding, M. D. Santambrogio, S. A. Hofmeyr, A.
Buluc ,̧ L. Oliker, K. A. Yelick, 2020. LOGAN: high-performance gpu-based
x-drop long-read alignment, IEEE International Parallel and Distributed
Processing Symposium (IPDPS).

[4] F. F. d. Santos, P. F. Pimenta, C. Lunardi, L. Draghetti, L. Carro, D. Kaeli, P.
Rech, 2019. Analyzing and increasing the reliability of convolutional
neural networks on gpus, IEEE Transactions on Reliability 68 (2), 663–
677. DOI: 10.1109/TR.2018.2878387

[5] S. Alcaide, L. Kosmidis, H. Tabani, C. Hernandez, J. Abella, F. J. Cazorla,
2018. Safety-related challenges and opportunities for gpus in the
automotive domain, IEEE Micro 38 (6), 46–55. DOI:
10.1109/MM.2018.2873870

[6] M. Benito, M. M. Trompouki, L. Kosmidis, J. D. Garcia, S. Carretero, K.
Wenger, 2021. Comparison of gpu computing methodologies for safety-
critical systems: An avionics case study, Design, Automation Test in
Europe Conference Exhibition (DATE).

[7] S. Kestur, J. D. Davis, O. Williams, 2010. Blas comparison on fpga, cpu and
gpu, IEEE Computer Society Annual Symposium on VLSI.

[8] A. A. Awan, H. Subramoni, D. K. Panda, 2017. An in-depth performance
characterization of cpu- and gpu-based dnn training on modern
architectures, Proceedings of the Machine Learning on HPC
Environments (MLHPC).

[9] A. Abdelfattah, D. Keyes, H. Ltaief, 2016. Kblas: An optimized library for
dense matrix-vector multiplication on gpu accelerators, ACM
Trans.Math. Softw. 42 (3), 1-31. DOI: 10.1145/2818311

[10] cublas: Basic linear algebra on nvidia gpus.
https://developer.nvidia.com/cublas (Access Date: January 2023).

[11] C. Brown, A. Abdelfattah, S. Tomov, J. Dongarra, 2020. Design,
optimization, and benchmarking of dense linear algebra algorithms on

DEU FMD 26(76) (2024) 40-48

 48

amd gpus, IEEE High Performance Extreme Computing Conference
(HPEC).

[12] rocblas user guide. https://rocblas.readthedocs.io/ (Access Date:
January 2023).

[13] J. Dongarra, M. Gates, A. Haidar, J. Kurzak, P. Luszczek, S. Tomov, I.
Yamazaki, 2014. Accelerating numerical dense linear algebra
calculations with gpus, Numerical Computations with GPUs, Springer,
Cham.

[14] L. Wang, W. Wu, Z. Xu, J. Xiao, Y. Yang, 2016. Blasx: A high performance
level-3 blas library for heterogeneous multi-gpu computing, Proceedings
of the International Conference on Supercomputing, (ICS).

[15] C. Nugteren, 2018. Clblast: A tuned opencl blas library, International
Workshop on OpenCL (IWOCL).

[16] J. Dongarra, S. Hammarling, N. J. Higham, S. D. Relton, P. Valero-Lara, M.
Zounon, 2017. The design and performance of batched blas on modern
high-performance computing systems, Procedia Computer Science 108,
495–504. DOI: 10.1016/j.procs.2017.05.138

[17] F. Li, Y. Ye, Z. Tian, X. Zhang, 2019. CPU versus GPU: which can perform
matrix computation faster - performance comparison for basic linear
algebra subprograms, Neural Comput. Appl. 31 (8), 4353–4365. DOI:
10.1007/s00521-018-3354-z

[18] S. Ganeshan, N. K. Elumalai, R. Achar, 2020. A comparative study of
magma and cublas libraries for gpu based vector fitting, IEEE 11th Latin
American Symposium on Circuits Systems (LASCAS).

[19] J. J. Dongarra, J. Du Croz, S. Hammarling, I. S. Duff, 1990. A set of level 3
basic linear algebra subprograms, ACM Transactions on Mathematical
Software, 16 (1), 1–17 16 (1). DOI: 10.1145/77626.79170

[20] Z. Xianyi, M. Kroeker, Openblas: An optimized blas library.
https://www.openblas.net/ (Access Date: January 2023).

[21] R. Clint Whaley, A. Petitet, J. J. Dongarra, 2001. Automated empirical
optimizations of software and the atlas project, Parallel Computing 27
(1), 3–35. DOI: 10.1016/S0167-8191(00)00087-9

[22] T. M. Aamodt, W. W. L. Fung, T. G. Rogers, M. Martonosi, 2018. General-
Purpose Graphics Processor Architecture, Morgan and Claypool
Publishers.

[23] Nvidia cudnn. https://developer.nvidia.com/cudnn (Access Date:
January 2023).

[24] Lapack-linear algebra package. http://www.netlib.org/lapack/ (Access
Date: January 2023).

[25] Nvidia-turing architecture white paper.
https://images.nvidia.com/aem-dam/en-zz/Solutions/design-
visualization/technologies/turing-architecture/NVIDIA-Turing-
Architecture-Whitepaper.pdf (Access Date: May 2022).

[26] Nvidia nsight compute. https://developer.nvidia.com/nsight-compute
(Access Date: January 2023).

[27] M. Awatramani, X. Zhu, J. Zambreno, D. Rover, 2015. Phase aware warp
scheduling: Mitigating effects of phase behavior in gpgpu applications,
International Conference on Parallel Architecture and Compilation
(PACT).

[28] Nvidia tesla v100 gpu architecture.
https://images.nvidia.com/content/volta-architecture/pdf/volta-
architecture-whitepaper.pdf (Access Date: May 2022).

[29] S. Markidis, S. W. D. Chien, E. Laure, I. B. Peng, J. S. Vetter, 2018. NVIDIA
tensor core programmability, performance and precision, IEEE
International Parallel and Distributed Processing Symposium
Workshops (IPDPSW).

[30] A. Abdelfattah, H. Anzt, E. G. Boman, E. Carson, T. Cojean, J. Dongarra, A.
Fox, M. Gates, N. J. Higham, X. S. Li, J. Loe, P. Luszczek, S. Pranesh, S.
Rajamanickam, T. Ribizel, B. F. Smith, K. Swirydowicz, S. Thomas, S.
Tomov, Y. M. Tsai, U. M. Yang, 2021. A survey of numerical linear algebra
methods utilizing mixed-precision arithmetic, The International Journal
of High Performance Computing Applications 35 (4), 344–369. DOI:
10.1177/10943420211003313

[31] Cutlass. https://github.com/NVIDIA/cutlass (Access Date: January
2023).

[32] A. Abdelfattah, S. Tomov, J. Dongarra, 2019. Towards half-precision
computation for complex matrices: A case study for mixed precision
solvers on gpus, IEEE/ACM 10th Workshop on Latest Advances in
Scalable Algorithms for Large-Scale Systems (ScalA).

[33] D. Yan, W. Wang, X. Chu, 2020. Demystifying tensor cores to optimize
half-precision matrix multiply, IEEE International Parallel and
Distributed Processing Symposium (IPDPS).

[34] X. Li, G. Zhang, H. H. Huang, Z. Wang and W. Zheng, 2016. Performance
Analysis of GPU-Based Convolutional Neural Networks, 45th
International Conference on Parallel Processing (ICPP).

[35] Jon Perez-Cerrolaza, Jaume Abella, Leonidas Kosmidis, Alejandro J.
Calderon, Francisco Cazorla, and Jose Luis Flores, 2023. GPU Devices for
Safety-Critical Systems: A Survey. ACM Comput. Surv. 55, 7, Article 147.
DOI: 10.1145/3549526

[36] Pandey, M., Fernandez, M., Gentile, F. et al. 2022. The transformational
role of GPU computing and deep learning in drug discovery. Nat Mach
Intell 4, 211–221. DOI: 10.1038/s42256-022-00463-x

[37] Sergio Barrachina, Manuel F. Dolz, Pablo San Juan, Enrique S. Quintana-
Ortí, 2022. Efficient and portable GEMM-based convolution operators for
deep neural network training on multicore processors, Journal of
Parallel and Distributed Computing, 167, 240-254. DOI:
10.1016/j.jpdc.2022.05.009

[38] Susmita Dey Manasi, Suvadeep Banerjee, Abhijit Davare, Anton A.
Sorokin, Steven M. Burns, Desmond A. Kirkpatrick, and Sachin S.
Sapatnekar, 2023. Reusing GEMM Hardware for Efficient Execution of
Depthwise Separable Convolution on ASIC-Based DNN Accelerators. In
Proceedings of the 28th Asia and South Pacific Design Automation
Conference (ASPDAC).

	1. Introduction
	2. Background
	3. Methodology
	4. Performance Evaluation
	5. Discussion
	6. Related Works
	7. Conclusion
	Ethics committee approval and conflict of interest statement

	References

