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Abstract 

Basic Linear Algebra Subprograms (BLAS) are a set of linear algebra routines commonly used by machine learning applications and 
scientific computing. BLAS libraries with optimized implementations of BLAS routines offer high performance by exploiting parallel 
execution units in target computing systems. With massively large number of cores, graphics processing units (GPUs) exhibit high 
performance for computationally-heavy workloads. Recent BLAS libraries utilize parallel cores of GPU architectures efficiently by 
employing inherent data parallelism. In this study, we analyze GPU-targeted functions from two BLAS libraries, cuBLAS and MAGMA, 
and evaluate their performance on a single-GPU NVIDIA architecture by considering architectural features and limitations. We collect 
architectural performance metrics and explore resource utilization characteristics. Our work aims to help researchers and 
programmers to understand the performance behavior and GPU resource utilization of the BLAS routines implemented by the 
libraries. 

Keywords: Basic linear algebra subprograms, Graphics processing units, Performance analysis 

 

Öz 

Temel Lineer Cebir Alt Programları (BLAS), makine öğrenmesi ve bilimsel hesaplama tarafından yaygın olarak kullanılan lineer cebir 
rutinleri içermektedir. BLAS rutinlerinin optimize edilmiş uygulamalarına sahip BLAS kütüphaneleri, bilgisayar sistemlerindeki 
paralel yürütme birimlerinden yararlanarak yüksek performans sunmaktadır. Çok sayıda çekirdeğe sahip olan grafik işlemci birimleri, 
hesaplama açısından ağır iş yükleri için yüksek performans sergilemektedir. Modern BLAS kütüphaneleri, veri paralelliğini kullanarak 
GPU mimarilerini verimli bir şekilde kullanmaktadır. Bu çalışmada, iki BLAS kütüphanesi (cuBLAS ve MAGMA) fonksiyonları analiz 
edilmiş, mimari özellikleri ve sınırlamaları göz önünde bulundurularak NVIDIA GPU mimarileri üzerindeki performansları 
değerlendirilmiştir. Performans metrikleri toplanmış ve kaynak kullanım özellikleri tespit edilmiştir. Çalışmamız, araştırmacıların ve 
programcıların BLAS rutinlerinin performans davranışını ve GPU kaynak kullanımını anlamalarına yardımcı olmayı amaçlamaktadır.

Anahtar Kelimeler: Temel lineer cebir alt programları, Grafik işlemci birimleri, Performans analizi 

 

1. Introduction 

With a massive number of processing units, GPU architectures 
offer performance improvements for applications from various 
domains, such as high-performance computing workloads [1–3], 
deep learning training and inference computations [4,36], safety-
critical software for autonomous vehicles [5,35], and avionics 
systems [6]. Specifically, Deep Neural Networks (DNN) require 
high computational resources to enable parallel execution for 
their huge data-parallel operations. Essentially, neural networks 
include heavy linear algebra operations, mostly matrix 
multiplications, by considering different layers in the network. 
GEMM (general matrix multiplication) operation constitutes a 
substantial part of the convolutional layer computations in 
different CNN implementations [34,37,38]. Basic Linear Algebra 
Subprograms (BLAS) libraries offer high-performance vector and 
matrix operations by utilizing parallel execution units on both 
CPU and GPU architectures [7]. Deep Learning (DL) frameworks 
like PyTorch, Caffe, and TensorFlow rely on high-performance 
BLAS libraries exploiting parallel GPU cores to accelerate the 
training process [8].  

Most BLAS libraries conform to the BLAS interface, revealing 
standard functions that enable library users to develop programs 

without worrying about the implementation-specific details. 
While offering a generic interface to the developers, BLAS 
libraries are implemented by considering various design and 
optimization options. While CUDA-enabled libraries [9,10] like 
cuBLAS exploit the computational resources of NVIDIA GPUs, 
there are implementations [11,12] like rocBLAS that are written 
by HIP programming language and optimized for AMD GPUs. On 
the other hand, MAGMA (Matrix Algebra for GPU and Multicore 
Architectures) [13] provides high-level interfaces by supporting 
different CPU (like Intel MKL (Math Kernel Library) or 
OpenBLAS) or GPU (like cuBLAS or hipBLAS) backends while it 
offers its own implementations of some routines for better 
optimization. Modern BLAS libraries [14] support or are 
optimized for multi-GPU execution to exploit more parallelism. 
Additionally, for portability, open-source libraries like CLBlast 
[15] provide optimized OpenCL (Open Computing Language) 
routines for a wide variety of devices. 

In this work, we analyze two BLAS libraries, including cuBLAS 
[10] and MAGMA [13], and evaluate their performance on a 
single-GPU NVIDIA architecture by considering architectural 
constraints. Although there are studies comparing CPU and GPU 
performance of BLAS libraries [16,17] or comparing the 
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performance of GPU-based BLAS libraries for specific problems 
[18], we evaluate complete GPU-optimized Level-3 and one 
Level-2 routines with high complexity from both libraries by 
profiling their architectural features and limitations and analyze 
the computing efficiency of different subroutines from different 
libraries. 

The main contributions of our work are as follows: 

• We conduct a detailed experimental analysis for high-
complexity BLAS routines from two BLAS libraries on a 
modern GPU device. 

• We identify the most time-consuming computations, 
i.e., kernel functions, of the corresponding routines to 
point out the potential performance exploration. 

• We collect architectural performance metrics about the 
main kernel functions of the corresponding routines. 

• Based on our profiling results, we evaluate and compare 
the performance of the library functions according to 
the computation and memory resources of the GPU 
device. 

Our main goal is to present a quantitative analysis to researchers 
and programmers who are involved in scientific computing and 
developing machine learning systems. 

The remainder of this paper is organized as follows: Section 2 
presents some background on BLAS routines and GPU 
architectures. We explain our methodology in Section 3. Then the 
experimental evaluation is presented in Section 4 and the related 
discussion is given in Section 5. Section 6 presents the existent 
performance comparison studies for BLAS libraries. Finally, 
Section 7 summarizes the work with some conclusive remarks. 

2. Background 

2.1. Basic linear algebra subprograms 

Basic Linear Algebra Subprograms (BLAS) provide routines as an 
Application Programming Interface (API) for performing vector 
and matrix operations. The BLAS routines are classified into 
three levels based on the degree of the polynomial in the 
complexities of operations: 

Level 1 defines scalar, vector, and vector-vector operations. As 
an example, it includes a generalized vector addition (axpy, a x 
plus y): 

𝑦 ← 𝛼𝑥 + 𝑦 (1) 

Level 2 defines matrix-vector operations. As an example, it 
includes a generalized matrix-vector multiplication (gemv): 

𝑦 ← 𝛼𝐴𝑥 + 𝛽𝑦 (2) 

Level 3 defines matrix-matrix operations. As an example, it 
includes a general matrix multiplication (gemm): 

𝐶 ← 𝛼𝐴𝐵 + 𝛽𝐶 (3) 

Level 1 BLAS routines take linear time, O(n), Level 2 routines 
quadratic time, and Level 3 routines cubic time [19]. Modern 
BLAS libraries provide routines from all three levels. The 
libraries include single-precision and double-precision versions 
for both real and complex numbers. While the earlier 
implementations only consider dense vectors and matrices, 
modern libraries also concentrate on sparse matrices. 

The abstract definition of BLAS routines allows customization for 
high performance by exploiting architectural features in different 
computing systems. Due to the data-parallel nature of the 

computations, especially SIMD execution units offer high-
performance benefits. Both vector instructions in CPU systems 
and SIMD executions in GPU devices improve the performance of 
BLAS routines. While some BLAS libraries only include CPU-
based implementations [20,21], others exploit parallel cores on 
GPU architectures as GPU devices become more available and 
popular [10,12,13]. 

In this work, we focus on Level 2 and Level 3 routines with higher 
complexities and evaluate the performance of GPU-based 
libraries by considering their GPU resource utilization. 

2.2. GPU architectures 

With a large number of processing units, GPU architectures offer 
high performance for applications from various domains. As 
illustrated in Figure 1, a modern GPU architecture contains 
hierarchical computational and memory units. Each core in a core 
cluster is responsible for single-instruction-multiple-thread 
(SIMT) execution. While the cores inside the same core cluster 
(Streaming multiprocessor-SM) have access to the scratchpad 
memory (shared memory or L1 cache), all the cores can 
communicate through the L2 cache structure via interconnect. 
DRAM-based global device memory maintains larger but 
relatively slower data access for all threads executing in the 
device [22]. Not only does a modern GPU device include general-
purpose cores but also special function units (SFU) for fast 
transcendental function computations as well as tensor cores for 
efficient matrix multiplications. CUDA (Compute Unified Device 
Architecture) is a parallel programming model and application 
programming interface (API) that enables programmers to 
develop parallel software for general purpose processing on 
GPUs. 

 

Figure 1. Modern GPU architecture. 

3. Methodology 

In this work, we evaluate two main BLAS libraries with GPU 
implementations. Specifically, we focus on Level 2 and Level 3 
routines, which have higher computation requirements. To 
understand the GPU utilization of the target routines, we collect 
architectural performance metrics and compare the resource 
utilization of the most time-consuming parts of the computations. 
In our analysis, we investigate both SIMD unit and tensor core 
utilization and memory resource usage. 

3.1. BLAS libraries 

We consider two commonly used GPU-supporting BLAS libraries 
to examine in our performance evaluation study: cuBLAS [10] 
and MAGMA [13].  

cuBLAS library, developed by NVIDIA, provides BLAS functions 
that are well-optimized for NVIDIA GPUs. Many machine learning 
frameworks (e.g., TensorFlow, Keras) rely on the cuDNN library 
[23], which utilizes the same kernel functions implemented as 
part of the cuBLAS library.  
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MAGMA (Matrix Algebra for GPU and Multicore Architectures) is 
an open-source project developed for hybrid multicore and 
multi-GPU systems. Based on LAPACK [24], which utilizes the 
shared-memory vector and parallel processors, MAGMA allows 
programmers to easily port their software from LAPACK to 
MAGMA to take advantage of the modern heterogeneous 
architectures. 

Besides standard implementations, both libraries include 
batched operations by executing the multiple small kernels in 
parallel CUDA streams, multi-GPU executions for higher 
performance, and mixed and low precision executions offered by 
NVIDIA GPU functional units. 

3.2. BLAS routines 

While there are several BLAS routines in three levels (as given in 
Section 2.1), we focus on one main Level 2 function (GEMV) and 
five Level 3 functions (GEMM, SYMM, SYRK, TRMM, TRSM) in our 
evaluation. Since the computational complexity is high, especially 
in Level 3 matrix-matrix routines, we include those specific 
operations to examine their performance in our target massively 
parallel GPU device. The routines in our evaluation are as follows: 

GEMV performs matrix-vector multiplication: 

𝒚 = 𝛼𝑨𝒙 + 𝛽𝒚   

where A is an m by n matrix, x and y are vectors, and α and β are 
scalars. 

GEMM performs matrix-matrix multiplication: 

𝑪 = 𝛼𝑨𝑩+ 𝛽𝑪  

where A, B, and C are an m by k, k by n, m by n matrices, and α 
and β are scalars. 

SYMM performs symmetric matrix-matrix multiplication: 

    𝑪 = 𝛼𝑨𝑩+ 𝛽𝑪 

where A is an n by n symmetric matrix, B and C are m by n 
matrices, and α and β are scalars. 

SYRK performs symmetric rank-k update to a matrix C: 

    𝑪 = 𝛼𝑨(𝑨)𝑻 + 𝛽𝑪 

where C is an n by n symmetric matrix, A is an n by k matrix, and 
α and β are scalars. 

TRMM performs triangular matrix-matrix multiplication, where 
one input matrix is triangular, and one input matrix is general, 
and TRSM performs solving triangular matrix with multiple 
right-hand sides. 

We evaluate both single-precision and double-precision 
functions provided by cuBLAS and MAGMA libraries. 
Additionally, for GEMM operation, we execute the half-precision 
routines, which utilize tensor cores in the target GPU device. 

3.3. Performance metrics 

To understand the performance of target operations running on 
GPU architectures and perform a comparison study, we consider 
not only kernel execution times but also architectural metrics 
provided by profiling tools. Since we are interested in 
performance analysis on GPU devices at the chip level to see if any 
specific architecture features are responsible for the 
performance difference, we collect information for the kernel 
executions. We do not include the data transfer time from CPU 
memory to GPU global memory (HtoD) or GPU global memory to 

CPU memory (DtoH). The performance metrics collected from 
kernel executions and profiling tools are as follows: 

FLOPS: Since BLAS routines contain intensive floating-point 
calculations, we report floating-point operations per second 
(FLOPS), which is a measure of computer performance. 

Compute resource utilization: We analyze how the target 
routines utilize the compute resources available in GPU devices. 
We consider compute resources of the streaming 
multiprocessors (SM) by including both high-level SM utilization 
values and detailed pipeline utilization values per each pipeline, 
such as LSU (Load-Store unit) and ALU (Arithmetic logic unit). 

Memory resource utilization: We analyze how the target 
routines utilize the memory resources available in GPU devices. 
While GPU architectures include a hierarchical memory structure 
with different levels, we consider the throughput values for 
global memory. Moreover, our pipeline utilization analysis 
demonstrates the usage of load-store units, which is higher for 
memory-bound operations. 

Warp occupancy: Warp occupancy is a measure of thread 
parallelism in a GPU program, which is defined as the number of 
warps running concurrently on a multiprocessor divided by the 
maximum number of warps that can run concurrently. Since the 
available registers and shared memory are shared among all 
active warps on a streaming multiprocessor, the number of active 
warps can be limited by the register and shared memory usage of 
the threads. The higher register or shared memory usage in each 
thread limits the number of active warps running simultaneously 
on a streaming multiprocessor. While higher occupancy does not 
always reveal higher performance, occupancy values provide 
information about the device limitations and guide the 
programmer for register/memory usage.   

Table 1. Salient characteristics of GPU device used in our 
experiments. 

Property Value 

CUDA Compute Capability 7.5 

Global memory size 3914 MB 

Multiprocessors 14 MP 

CUDA cores per MP 64 

GPU Max Clock rate 1455 MHz  

Memory Clock rate 4001 MHz 

Memory Bus Width 128-bit 

L2 Cache Size 1048576 bytes 

Max Warps per MP 32 

Max Thread Blocks per MP 16 

Max Threads per MP 1024 

Registers per MP 65536 

Shared memory per MP 65536 

4. Performance Evaluation 

We evaluate the performance of different routines in cuBLAS and 
MAGMA libraries on our mobile workstation with an NVIDIA 
T1000 GPU device, a Turing architecture [25] professional 
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Table 2. Properties of kernel functions in single-precision routines. 

BLAS routine Function name Kernel name Grid size Block size Threads Cycles 

GEMV magmablas_sgemv sgemvn_template_kernel_fermi 98 512 50,176 482,099 

 cublasSgemv gemv2N_kernel 400 128 51,200 479,169 

GEMM magmablas_sgemm sgemm_kernel_fermi_nn 1,089 256 278,784 56,212,094 

 cublasSgemm volta_sgemm_128x128_nn 625 256 160,000 37,636,048 

SYMM magmablas_ssym hemm_template_ll_kernel 9,604 256 2,458,624 182,148,002 

 cublasSsym magma_lds128_strmm_kernel (2) 2,401 128 307,328 30,964,954 

SYRK magmablas_ssyrk volta_sgemm_64x32_sliced1x4_nt  656 256 167,936 5,889,255 

 cublasSsyrk volta_sgemm_128x128_lower_nt 625 256 160,000 19,417,160 

TRMM magmablas_strmm trmm_template_lNx_kernel (98) 98 1024 100,352 34,142 

 cublasStrmm trmm_left_kernel_core (24) 98 512 50,176 262,627 

TRSM magmablas_strsm volta_sgemm_128x32_nn (31) 98 256 25,088 106,655 

 cublasStrsm volta_sgemm_32x128_nn (5) 850 256 217,600 13,963,232 

mobile graphics card. Our target GPU device, of which the main 
features are given in Table 1, can optimize both single-precision 
and double-precision calculations and perform tensor 
operations. Our platform runs on Ubuntu 18.04 operating system, 
with MAGMA version 2.6.2 and cuBLAS version 11.3. We utilize 
single-precision and double-precision versions available in the 
libraries for BLAS routines. Additionally, we execute half-
precision GEMM routines, which utilize FP16 tensor functional 
units in our GPU device. 

Firstly, we execute our target BLAS routines and collect GFLOPS 
(billion floating-point operations per second) values for the 
entire routine execution. Specifically, our experiments consist of 
ten executions, where we report the average. 

Then, we run the same configurations on NVIDIA Nsight Compute 
[26], a kernel profiler for CUDA applications, and collect detailed 
performance metrics for each kernel function. Nsight Compute 
provides detailed performance metrics and visual 
representations for resource usage of CUDA kernels. Based on the 
performance metrics explained in the previous section, we 
examine compute and memory resource utilization by 
considering hardware limitations. We analyze the performance 
and resource utilization of the implementations available in both 
libraries by discussing the potential bottlenecks. 

We note that we perform a precision comparison for the 
computations by comparing CPU results and observe a maximum 
error of less than e-08. 

4.1. Kernel functions in single-precision and double-
precision routines 

We execute both single-precision and double-precision BLAS 
routines from cuBLAS and MAGMA libraries. The corresponding 
functions in the libraries follow a standard naming, such as 
cuBLAS has cublasSgemm and cublasDgemm, MAGMA has 
magmablas_sgemm and magmablas_dgemm for single-precision 
and double-precision GEMM computations, respectively. 

Using the Nsight Compute tool, we identify the corresponding 
kernel functions and collect their runtime properties, including 

thread dimensions and the number of cycles. As a representative 
input size, we select 3136 as the matrix/vector dimension and 
collect performance metrics for this input. Table 2 and Table 3 
present the launch configuration parameters and the cycles for 
each kernel in the BLAS routines. While some routines include 
only one kernel function (e.g., sgemm_kernel_fermi_nn for single-
precision GEMM routine in MAGMA), the others consist of several 
kernel functions in different sizes in terms of thread sizes and 
execution time. In the case of multiple kernel functions, either 
several light-weight kernels are executed and perform partial 
computation or one heavy kernel (e.g., trmm_left_kernel_core in 
cublasStrmm routine) is launched multiple times and performs 
the main computation. 

In Table 2 and Table 3, we put the largest/dominant kernel 
functions from each BLAS routine (and the number of kernel 
launches in parenthesis if launched more than once). For 
instance, there are 18 volta_dgemm_64x64_nn instances in 
cublasDtrmm routine (as given in Table 3), each launched with 
50,176 threads (784 blocks and 64 threads per block), and each 
takes ~120 million cycles. Since multiple instances may take 
different cycles, we report the largest instance in tables to include 
the most heavy-weight kernel instance. For further investigation, 
one can examine the execution of this specific instance. 

4.2. GFlops 

Before examining the architectural properties and GPU resource 
usage of the target BLAS computations, we execute all the 
routines with ten different input sizes and collect Gflop values for 
the complete execution. We generate the vectors and matrices 
randomly to represent dense structures. Figure 2 presents GFlop 
values for single-precision and double-precision routines. 

We observe substantial differences between cuBLAS and MAGMA 
single-precision computations. cuBLAS exhibits much larger 
GFlop values, especially for SSYMM and SSYRK operations. On the 
other hand, the GFlop values are much closer for double-
precision computations, where the pressure on computational 
resources is higher due to higher precision.
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Table 3. Properties of kernel functions in double-precision routines. 

BLAS routine Function name Kernel name Grid size Block size Threads Cycles 

GEMV magmablas_dgemv dgemvn_template_kernel_fermi 98 512 50,176 947,981 

 cublasDgemv gemvNSP_kernel 196 512 100,352 957,724 

GEMM magmablas_dgemm dgemm_kernel_fermi_nn 2,401 256 614,656 1,117,379,580 

 cublasDgemm volta_dgemm_128x64_nn 2,450 128 313,600 1,130,253,310 

SYMM magmablas_dsym hemm_template_ll_kernel 9,604 256 2,458,624 1,112,063,431 

 cublasDsym magma_lds128_dtrmm_kernel  4,802 128 614,656 551,819,169 

SYRK magmablas_dsyrk volta_dgemm_128x64_nt (7)  600 128 76,800 185,849,226 

 cublasDsyrk volta_dgemm_128x64_lower_nt 1,225 128 156,800 592,198,360 

TRMM magmablas_dtrmm volta_dgemm_64x64_nn (91) 196 64 12,544 7,457,654 

 cublasDtrmm volta_dgemm_64x64_nn (18) 784 64 50,176 120,024,331 

TRSM magmablas_dtrsm volta_dgemm_12_x64_nn (20) 1,127 128 144,256 43,314,307 

 cublasDtrsm volta_dgemm_64x64_nn (6) 833 64 53,312 252,359,168 

 

 
Figure 2. GFlop values for single-precision and double-precision routines. 

4.3. Resource utilization 

We collect SM and memory utilization values to explain the 
performance differences (GFlop values) observed in the previous 
section. As stated before, we analyze one instance of the kernel 
functions with the largest total number of cycles (given in Table 

2 and Table 3). Essentially, all instances of the functions 
demonstrate similar utilization values as the indication of the 
performance bottleneck. 

Figure 3 presents both SM and memory utilization values (out of 
100%) for the kernel functions in our consideration. While 



DEU FMD 26(76) (2024) 40-48 

 45 

Table 4. Occupancy metrics for double-precision GEMM kernels. 

 cuBLAS MAGMA 

Registers per Thread 234 61 

Shared memory per Block (bytes) 25088 17024 

Threads per Block 128 256 

Active Threads per SM Limit (Register) 256 (≤ 65536/234) 1024 (≤ 65536/61) 

Active Thread Blocks per SM Limit (S. Memory) 2 (≤ 65536/25088) 3 (≤ 65536/17024) 

Active Thread Blocks-Threads per SM 2-256 (2x128) 3-768 (3x256) 

Theoretical Occupancy for Each SM 25% (256/1024) 75% (768/1024) 

Achieved Occupancy 24.93% 74.65% 

computationally-intensive Level-3 computations demonstrate 
very high SM utilization values (larger than 90%), especially for 
double-precision operations, the memory is the bottleneck for 
less intensive Level-2 GEMV routine. 

 
Figure 3. Utilization values for kernel functions in single-
precision and double-precision routines. 

Furthermore, we closely look at the compute pipeline utilization 
to understand how the kernel functions make use of the 
functional units in GPU cores. Figure 4 presents the utilization for 
the compute resources of the streaming multiprocessors. In our 
diagrams, we include only the highest compute pipelines. Mainly, 
single-precision routines utilize LSU and FMA units, and double-
precision routines utilize LSU and FP64 units. LSU stands for 
Load Store Unit, which issues load, store, atomic, and reduction 
instructions to the first-level cache for memory access 
operations. FMA stands for Fused Multiply Add/Accumulate Unit, 
which performs FP32 arithmetic (Single-precision floating-point 
format), including FADD, FMUL, and FMAD. FP64 represents 
double-precision floating-point unit, which is responsible for 
FP64 arithmetic (Double-precision floating-point format), 
including DADD, DMUL, and DMAD. Additionally, we observe ALU 
unit (Arithmetic Logic Unit) utilization, which performs bit 
manipulation and logic instructions as well as integer (i.e., IMAD, 
IMUL) operations. Since ALU unit utilization gets lower than 20%  

 

 
Figure 4. Pipeline utilization values for single-precision and 
double-precision routines. 



DEU FMD 26(76) (2024) 40-48 

 46 

for most cases and does not give insights about our analysis, we 
do not report its values. 

While we report the utilization values for both single-precision 
and double-precision computations, we focus on the consistent 
double-precision values. In parallel to SM and memory utilization 
values, Level-3 double-precision routines exhibit large FP64 
utilization by spending most of their time in high-precision 
floating-point computations. Since double-precision Level-3 
BLAS routines require high computation resources, we observe 
that they consume all available GPU multiprocessors/cores in our 
device with almost 100% SM utilization values. 

4.4. Warp occupancy 

Occupancy is the ratio of the number of active warps per 
multiprocessor to the maximum number of possible active warps. 
The higher occupancy does not always mean higher performance, 
but reveals the ability of GPU device to have active warps. Even if 
the number of threads is large and GPU device offers a large 
number of cores, the occupancy can be low due to the 
requirements of individual threads, such as number of registers 
or shared memory. 

We collect occupancy results from NVIDIA Nsight Compute 
profiles, which provides a set of metrics that identifies occupancy. 
Theoretical Occupancy represents the upper limit for occupancy 
due to the kernel launch configuration and the GPU device 
capabilities. Achieved Occupancy measures the occupancy during 
execution of the kernel. Additionally, we collect details about the 
occupancy-limiter factors. Moreover, we focus on double-
precision GEMM routines since they exhibit more consistent and 
reasonable executions. 

Table 4 presents occupancy limiters and occupancy values for 
GEMM kernels in both libraries. We see 25% and 75% occupancy 
values for cuBLAS and MAGMA kernels, respectively. By 
considering the upper limits of our GPU device multiprocessor 
(32 warps, 16 thread blocks, 1024 threads, 65536 registers, and 
65536 bytes shared memory per SM as given in Table 1), we can 
have 256 active threads (8 warps) and 768 active threads (24 
warps) per SM while it is possible to execute 1024 threads (32 
warps). While the register and shared memory usage of cuBLAS 
threads limit the number of active warps, the shared memory 
usage is the limitation for the MAGMA kernel execution. 

Even if the kernel functions have diverse occupancy values and 
cuBLAS seems to be inefficient in terms of occupancy, we observe 
similar performance in terms of cycles (Table 3), GFlop values 
(Figure 2), and SM utilization (Figure 3). cuBLAS threads, which 
utilize low-latency memory structures like registers and shared 
memory, execute faster even if the execution does not involve 
many active threads. On the other hand, MAGMA kernel with 
more threads utilizes SM resources efficiently and benefits from 
the parallel cores in the GPU multiprocessor. Additionally, we 
observe no significant difference between theoretical and 
achieved occupancy values in the kernel, which emphasizes no 
serious imbalance issue in the kernel executions [27]. 

4.5. Tensor core usage 

NVIDIA has introduced Tensor Cores in 2017 with Volta V100 
GPUs [28] to accelerate matrix multiplication operations with 
dedicated hardware. NVIDIA Tensor Cores present the native 
instructions for half-precision matrix multiply operations [29]. 
They offer shorter execution times for linear algebra methods, 
which include matrix operations, by utilizing mixed-precision 
arithmetic [30]. 

Both cuBLAS and MAGMA libraries offer Half-precision General 
Matrix Multiply (HGEMM) routines that enable tensor core 

utilization: cublasHgemm and magma_hgemm. To observe the 
performance of tensor cores, we utilize half-precision GEMM 
routines that perform the operations in the tensor core's 16-bit 
execution units. 

We execute and profile half-precision routines from the libraries 
and observe that both routines rely on CUTLASS [31], which is a 
collection of CUDA C++ template abstractions for implementing 
GEMM operations within CUDA. From our profiling results 
obtained from NVIDIA Nsight Compute, we observe that both 
cuBLAS and MAGMA executions utilize the same CUTLASS 
function, therefore, perform similarly by utilizing Tensor (FP) 
units. Since cuBLAS execution utilizes the same CUTLASS kernel 
function for the target execution, we only report the MAGMA 
values to avoid duplication. Figure 5 presents normalized GFlop 
values for half-precision GEMM routine (HGEMM) compared to 
double-precision GEMM (DGEMM) with different matrix 
dimensions.  Both precision reduction in function arguments and 
tensor core usage in computation reduce the computation time 
for various input sizes. Additionally, Figure 5 presents SM and 
memory utilization values collected from NVIDIA Compute for 
3136 input size. As discussed in Section 4.3, double-precision 
GEMM computations require high computational resources. SM 
utilization is the bottleneck, with almost 100% SM usage. Hence, 
they are compute-bound. On the other hand, half-precision 
GEMM computations neither fully utilize SM cores nor memory 
bandwidth for the same number of elements. Since Tensor cores 
maintain high performance due to their half-precision 
specialized units, they could offer scalable high performance 
[32,33]. 

 
Figure 5. Normalized GFlop and utilization values for double-
precision vs half-precision. 

5. Discussion 

While double-precision operations and Level-3 routines with 
larger computations utilize computation resources efficiently, 
the memory operations become the bottleneck for single-
precision operations and Level-2 routines with less 
computations. If we compare cuBLAS and MAGMA routines, they 
do not exhibit much difference at computationally-heavy 
operations; however, cuBLAS offers higher performance in terms 
of GFlops and higher SM utilization for most of the executions. 
One can prefer cuBLAS for small-scale operations, if the 
computational resources in the target GPU device are relatively 
limited. On the other hand, for large-scale DNN operations, which 
include heavy GEMM computations, the performance mainly 
depends on the parallelism support of the target device other 
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Table 5. Performance comparison studies for BLAS libraries. 

Work Libraries Operations Metrics 

Dongarra et al. [16] 
MKL, OMP (CPU)                       
CuBLAS, MAGMA (GPU) 

Batched GEMM Gflop/s 

Li et al. [17] MKL (CPU), CuBLAS (GPU) 
DOT, GEMV, GEMM, 
TRSV, and TRSM 

Execution time 

Ganeshan et al. [18] MAGMA and CuBLAS (GPU) 
Vector Fitting (QR 
decomposition) 

Execution time 

Our Work MAGMA and CuBLAS (GPU) 
All Level-3 and one 
Level-2 BLAS routines 

Execution cycles, GFlop, SM, 
memory, pipeline utilization, 
occupancy 

than the underlying BLAS library implementation. Especially, the 
tensor core execution support, which is specialized for matrix 
multiplication operations, gets a key issue to accelerate GEMM 
operations. 

6. Related Works 

BLAS libraries have been utilized by neural network 
implementations and general-purpose applications. Additionally, 
there are studies comparing CPU or GPU performance of BLAS 
libraries. 

Dongarra et al. [16] propose a block-interleaved approach for 
batched DGEMM operations to improve performance by 
considering the data layout of the matrices in the system 
memory. The authors perform a comparison study by 
considering batched GEMM operations, which include multiple 
BLAS operations in parallel on many small matrices, with MKL, 
OpenMP, CuBLAS, and MAGMA libraries, and analyze the impact 
of the data layout on the performance. 

Li et al. [17] present a comparison study between a subset of 
BLAS operations from MKL library running on a multi-core CPU 
system and cuBLAS library utilizing a many-core GPU 
architecture. The authors summarize the implementation and 
parallelization details and conduct a performance evaluation by 
considering execution time for a variety of matrix sizes. 

Ganeshan et al. [18] focus on GPU execution of vector fitting 
(GVF) algorithm. After presenting mathematical representation 
of the algorithm, the authors execute the codes that are based on 
QR decomposition operations. They utilize 
magma_dgeqrf_batched and cublas_dgeqrf_batched routines for 
the corresponding functionality from MAGMA and cuBLAS 
libraries, respectively. The results, based on execution times, 
demonstrate higher performance for MAGMA-based execution 
for the target GVF algorithm. 

Although the previous studies perform comparison analyses by 
considering CPU and GPU performance of BLAS libraries, we 
focus on GPU executions and perform a detailed performance 
analysis for computationally-heavy BLAS routines by considering 
architectural metrics and resource utilization. Table 5 
summarizes the related performance comparison work and our 
work based on the differences including target BLAS libraries, 
BLAS operations, and performance metrics used in the 
comparison study. 

7. Conclusion 

In this  study, we examine the architectural characteristics of 
BLAS routines implemented in cuBLAS and MAGMA libraries. We 
execute target routines from both libraries in our target GPU 

device and evaluate performance metrics by considering 
architectural resource utilization and limitations. We believe that 
our quantitative analysis will help researchers and programmers 
who utilize library functions to understand target executions and 
make decisions. 

Our work can be expanded by comparing the BLAS libraries in 
different GPU device generations to better understand the effect 
of the architectural differences. Additionally, the 
implementations of the domain-specific applications based on 
different BLAS libraries can be evaluated by comparing the 
resource utilization of the target application. 
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