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Keywords: Cryptology, Data encryp- In this study, we present a new cryptosystem named Deoxyribose Nucleic Acid (DNA) secret
tion, DNA, Mittag-Leffler function,  riting with the Laplace transform of the Mittag-Leffler function. The method is proper
Laplace transform, Statistical tests for encrypting large files. In this technique, we consider the original message as binary
2010 AMS: 33E12, 44A10, 62P99, sequence. These binary streams corresponding to the plain text is transformed to DNA
68P2_5’ 92D20, 94460 bases by utilizing DNA encoding, then the DNA codes are transformed to positive integers.
Received: 24 January 2023 We apply the Laplace transform to these numbers which are coefficients of the expansion
Accepted: 25 August 2023 of the Mittag-Leffler function. To provide multi-stage protection, the outcome coefficients
Available online: 10 September 2023 are transformed to binary sequences and other level of encryption with cumulative XOR
is applied and equivalent MSBs obtained at every iteration are utilized for building cipher
text. Decryption is implemented in the opposite way. We employ monobit test, correlation
analysis for measuring the reliability of encryption and Python programming language to
obtain secret message, the plain text and computations of statistical tests.

1. Introduction

Cryptography is simply the science of utilizing mathematics for encryption and decryption of information. Its essential aim is to provide
two groups, to communicate over a channel that is insecure in the manner that an opponent cannot comprehend the message that is for the
intended recipient. Information security is becoming increasingly important in the utilization of electronic telecommunication in financial
activities. Cryptography is intended to enable safety services and it has become an important technique in many areas for information
protection. Encryption is the procedure of converting an original message called plain text to obscuring form named cipher text. We
commonly use it for confidentiality and generally for secret communication [1-3].

A cipher is defined as a method to apply encryption and decryption. As mentioned above, the actual message is regarded as plain text and
the enciphered form as cipher text. The encrypted message comprises the entire information of the original message but is not in form
decipherable by a person or computer unless an appropriate tool to decrypt it. It must look like nonsense to those not aimed to understand it.
We usually parameterize ciphers by using a bit of subsidiary information, named as a key. The encrypting process is diversified based on the
key, which modifies the elaborated operation of the method. Unless the key is proper, decryption is not possible.

Several methods for cryptography are presented in [4—11]. The mathematical method utilizing matrices for it are presented in Dhanorkar
and Hiwarekar [12], Overbey and others [13], Saeednia [14]. A message is encrypted by means of series expansion of f (¢) and its Laplace
transform [1, 15, 16]. In [17], Hiwarekar uses the Laplace transform of hyperbolic cosine functions for encryption and decryption. Here, we
propose Mittag-Leffler function and its variations for encryption and decryption by Laplace transform in DNA secret codes. First, let’s talk
about the importance of DNA chains in encryption.

It was stated by Watson and Crick that DNA chains are important in the encryption of information [18]. Although DNA encryption is a
new and useful, it is not as useful as the conventional method. We can combine it with current cryptographic systems to enable improved

Email addresses and ORCID numbers: m.cagri.yilmazer @gmail.com, 0000-0001-9784-838X (M. C. Yilmaze), emrah231983 @gmail.com, 0000-
0002-7822-9193 (E. Yilmaz), tubagulsen87 @hotmail.com, 0000-0002-2288-8050 (T. Giilsen), mikailet68 @ gmail.com, 0000-0001-8292-7819 (M.
Et)

Cite as ”M. C. Yilmazer, E. Yilmaz, T. Giilsen, M. Et, DNA secret writing with Laplace transform of Mittag-Leffler function, J. Math. Sci. Model.,
6(3) (2023), 120-132.°



https://orcid.org/0000-0001-9784-838X
https://orcid.org/0000-0002-7822-9193
https://orcid.org/0000-0002-7822-9193
https://orcid.org/0000-0002-2288-8050
https://orcid.org/0000-0001-8292-7819

Journal of Mathematical Sciences and Modelling 121

security [19-21]. Adleman’s research [22] in DNA computing and Viviana Risca’s project on DNA steganography gave rise to new fields of
DNA cryptography and stenography [23]. In [24], Sukalyan and Moumita Som presented a new technique for DNA encoding by using
Laplace transform. For a better understanding of the subject, let’s explain the structure of DNA.

DNA is a long polymer consisting of numerous nucleotides in the shape of a double helix storing genetic information. Each spiral chain
composed of sugar phosphate as spine and bases are joined to complemental chain by hydrogen bridges between dual bases Adenine(A),
thymine(T), guanine(G) and cytosine(C). Adenine and thymine are joined by two hydrogen bridges while guanine and cytosine are joined by
three. It is shown that DNA cryptography is very effective in its initial phase. Nowadays, various DNA computing algorithms can be solutions
for cryptanalysis and stenography problems. The idea of DNA computing compounded with areas of cryptography and steganography
becomes a new technique for nonbreakable algorithms [25,26].

There exists two complemental strands in the framework of DNA. Each base in DNA has a sugar constituent connected to a phosphate group
at one place, and to a nitrogen comprising nucleotide bounded at another place. The strands in DNA possess the phosphate of one base
connected to sugar of the next base to form a chain of consecutive sugars and phosphates with dangling nitrogenous bases, as seen in Figure
1.1.
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Figure 1.1: Fundamental DNA framework.

DNA includes two such strands, intertwined with each other to constitute a duplex helix with the nucleoids on the inside. Each A on one
strand constitutes weak bonds with a T on the other chain, and each C on a chain weakly to a G on the opposite strand. Thus, the two chains
are complemental and the sequence in one can be understood from other’s sequence. The fundamental DNA framework is illustrated in
Figure 1.2.
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Figure 1.2: Composite of Nucleotide bases in chains.

These complemental chains possess codons as basic components. Codons are essentially triads of nucleotide bases. Table 1 below
demonstrates codons building DNA sequences in two complemental chains. As can be observed DNA nucleotide bases are included by
codons and are complemented each other. We can utilize these codons for encryption and decryption of the information.

2. Preliminaries

In this section, we provide definitions and some features of the Mittag-Leffler function, Laplace transform, and relations between them
which are important in applying our method to cryptography.

Definition 2.1. Let f be a function defined on the set of positive real numbers. Then, L{f (t)} or F (s) which is the Laplace transform of
[ (¢) is defined by

LIf(0)} = F (s) :/Ome’s’f(t) dr. @

The domain of F (s) is set of values of s which the above improper integral converges. Furthermore, we can write the formula (2.1) as
f (1) =L~YF (s)}. In this situation, f (t) is defined as inverse Laplace transform of F (s). We call the symbol L which transforms f (t) into
F (s) as the Laplace transform operator. On the other hand, we can define the symbol LY which transforms F (s) to f () as the inverse
Laplace operator [27].
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The Laplace transform is named in memory of the French mathematician, physicist, and astronomer Pierre-Simon Marquis de Laplace
(1749-1827), who utilized the transform in his inquiries of probability theory.

Assume that the functions f and g have Laplace transforms for s > ¢; and s > ¢;, respectively. If ¢ represents the maximum of the two
numbers ¢ and ¢y, then for s > ¢ and constant o and 3, following expression holds:

[ e laro+Bedr=a [ ey dt—l—ﬁ/
0 0
That is to say L is a linear transform

Liof (1) +Be(t)} = al{f (1)} + BL{g (1)}

Moreover, using the features of the definite integral, the Laplace transform of any finite functions of ¢ is the sum of Laplace transforms of
single functions. Likewise, the same is held for inverse Laplace transforms [27].

We give some fundamental Laplace transforms as follows [27]

n!
Ly = g
1 "
—1 _ r
L {Sn+l} oo

Before touching on the Laplace transform of the Mittag-Leffler function and its variations, we want to mention about Mittag-Leffler function,
its properties, and its history.

The exponential function e* has a very significant role in the theory of integer-order differential equations. One-parameter generalization of
it, the function that is now represented by the following definition [28,29].

Definition 2.2. One-parametric Mittag-Leffler function is defined by
(aeC),
9= L rayr €0

where I is the gamma function. It was presented by Mittag-Leffler [30-32] and investigated also by Wiman [33, 34].

The two-parameter form of the Mittag-Leffler function, which plays a critical role in the fractional calculus was presented by Agarwal [29,35].
By using Laplace transform method, Humbert and Agarwal get several relations for this function [29,36]. It could have been named the
Agarwal function. However, Humbert and Agarwal greatheartedly left the same notation as for the one-parameter Mittag-Leffler function,
and this is why we call the two-parameter function as the Mittag-Leffler function [28,29,37].

Definition 2.3. By using the series expansion, a two-parameter form of the Mittag-Leffler function can be defined as follows [28,29]

o

7z
R T

j=0

1 mfzzj
Eim(@) = S 5y€- YL 5¢
z !

Some of the special conditions for Mittag-Leffler function are the hyperbolic sine and cosine:

(0, B>0). 2.2)

From the definition, we get

By (2 i 2/ i </ h
2,1 (Z) = - = ~— = coshz,

j:OF(2]+1) =0 (2))!

’ J.ZOF(2j+2) Z 5 2j+1! z
For B = 1, we get one-parameter Mittag-Leffler function as
7
E =E
txl Z F a]+ 1) tx( )

Using term-by-term derivation, we can build from (2.2) the series expansion of derivatives of the two-parameter Mittag-Leffler function [38]

d* d

/) =k keN,
dzx Eop(z JZ;(F Otj—i—ﬁ)z



Journal of Mathematical Sciences and Modelling 123

with (x), representing the factorial below
pe=x(x—=1)...(x—k+1).

By modifying the index of the summation, we can derive the following expression of the kth order derivative of two-parameter Mittag-Leffler
function by

dk - (j+k) i
ﬁEa,ﬁ (2) 71;7F(aj+ak+ﬁ)z .

k

We give the following Laplace transform of 1ok+B-1 g o

;3 (£at?®), which has significant role in our study [29],

oo

L P () = [ e P () di
0

a,
k1s@—P

= Gz (Re(s) > lal?).

3. Main Results

For encryption of the message, P, the plain text, is transformed into 8-bit binary codes of ASCII values corresponding to the original text,
Pyin- Then, we transform Py;, into DNA codes, Py, by applying the following assignments

Binary stream 00 | 01 | 10 | 11
DNA Nucleotide Base | A C G

Table 3.1: DNA Nucleotide bases and their corresponding 2 bit binary stream

where A, T, G, C are DNA nucleotide pairs. Afterwards, Py, is transformed into sequence of integers, P;,; by utilizing the following table,

A|T|G]|C
10 | 20 | 30 | 40

Table 3.2: DNA nucleotide bases and their corresponding decimal values.

we can correspond base pairs to numeric values. Subsequently, every integer in P, can be utilized as the coefficients of the Laplace transform
of the function f () = Gt“k*'ﬁ_lEl(xk)B (£ar%), in other words

L{Gtakﬂ;*lE(k (tar®)} = L{i G;(j+k)! (da)’ 1o/ toktp—1 }

)
aB

=S I'(oj+ok+B)
= Gi(j+k)! (+a) 1

= . : 7
ng) J! saj+ak+p

3.1)

(i j
where G; > 0, Vj > 8. Thereafter, the coefficients of (3.1) namely, C; = w is converted into Pr,, by using C; mod 128.
Therefore, we can assign each integer of Py, to its corresponding 7 binary equivalents and these values are transformed into Pyog by

applying cumulative XOR protocol in Figure 3.1. Finally, we can correspond ASCII equivalent of the values in Pxog to letters of encrypted
text, E.

For decryption of the secret message, the encrypted text E is transformed into its corresponding ASCII values that is 7 binary equivalent,
E4scyy- Afterwards, cumulative XOR protocol is applied and outcome binary sequences are transform back into their corresponding decimal
form DE}, and by using C; = 128 - key; + DE, we obtain the coefficients of the Laplace transform again. If inverse Laplace transform is
applied to the following

kis@—P = C G (j+hk) (£a)’

G Y ;)Saj+ak+[3’ €= !

(s*Fa

)

we get G; which is sequence of integers corresponding to DNA nucleotide bases. Subsequently, G; is transformed back into DNA bases by
utilizing Table 3.2 which generate Py,,. Then, we can convert the DNA nucleotide bases back to their binary streams i.e. Pp;, by utilizing
Table 3.1. Lastly, the binary sequences in Py;;, are assigned to their equivalent ASCII values and therefore generating the decrypted text or
the plain text, P.
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k

Theorem 3.1. The plain text string in respect of G;,j = 0,1,2,... by using the Laplace transform of Gt“k+ﬁ_1Ea

transformed to P, that is consists of DEj where

DEj=Cj—128-keyj, for j=0,1,2,-

;;(j:ata) can be

and
G, (j+k)! (+a)’

Cj= i

7f0rj2071527”'
with private key

C;—DE;
keyj = —Foe—" for j=0,1,2,---

Theorem 3.2. The encrypted text string in respect of G, j =0,1,2,..., with private key key;, j = 0,1,2,... by using the inverse Laplace
transform of

G ks B = G+ (+a) 1
(s® q:a)k+1 - ];) ! soj+ok+p
can be transformed to Py, that is consists of G j, where
DE;+ 128 -key;
= 2R o j= 0,12,

7 (JJ]F'k)' (:I:a)j '
and
C;j =128 -key;+DEj, for j=0,1,2,---.

Theorem 3.3. Encryption of the plain text and decryption of the secret message in terms of (3.1) is independent of the choice of & and B in
Mittag-Leffler function.

Proof. Let us consider the function as follow

_ 2 G (j+k)! (+a) g0 toktf-1
Gtock+[3 IE(k) + t(X — J
ap (Fa%) J;O ! I (aj+ak+p)

Go (0+K)! (da)? @ O+ak+f-1
0! I'(a-0+ak+p)
G (1+k)! (ia)lta~1+ak+ﬁ71

+ I T(a-1takip)
N Gy (24k)! (ia)Zta~2+ak+ﬁ—l
2! I'(o-2+ak+p)
G O (£ ntOm+0£k+ﬂ—l
P 1Gh 0Ly =) . (3.2)
n! I'(an+ ak+B)
By taking the Laplace transform of (3.2) and using I' (k + 1) = k!, we have
G Ks® B Gy(0+k)! (+a)° (o-0+ak+B—1)!
(s¢Fa)tt 0! (- 0+ak+B—1)! s00+ok+p
L Gk (+a)' (- 14ak+B—1)!
1! (- 1+ok+p—1)! s 1+0ok+p
L G4k (+a)? (o-2+ak+B—1)!
2! (24 o0k+p—1)! sO-2+ak+p
N +Gn(n+k)! (£a)" (a-n+ok+p—1)!
n! (a-n+ok+p—1)! son+ok+f
 Gy(0+K)! (xa)? 1 G (1+k)!(£a)! 1
B 0! §0-0+0k+B 1! go-1+ak+B
Gy (2+K) (xa)* 1 Gu(n+k)! (£a)" 1
L G0+h! () L, Galnt k) (a) L
21 §2+ak+B n! sontok+p
Therefore, the sequence corresponding to numerical values of the encrypted text is obtained as a
G;(j+k)!(+a)
Cj: ](_]J’_‘)( a) 7f0rj:071727”"
J!
This proves the theorem. O

In the following, we provide an example for encryption of the plain text and decryption of the secret message in respect of DNA secret
writing with the Laplace transform of the Mittag-Leffler function.
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3.1. Encryption

We consider the two-letter word ”Go” for demonstrating the algorithm. Here, 71 (01000111) and 111 (01101111) are ASCII values of ”G”
and ”0”, respectively. Equivalent binary stream characterization of the word is illustrated as follows.

[oftJofJoJoJtftftjoftftjoftjefr]r]

Table 3.3: Binary characterization of ASCII coded "Go”

We code the binary bit utilizing DNA coding exemplified in Table 3.3. Therefore, DNA encoded text transform into CACTCGTT and we
apply integer encoding to the script by utilizing Table 3.4. Hence, the equivalent integer encoded text is obtained as follow.

[20 [ 10 [ 20 [ 40 [ 20 [ 30 [ 40 [ 40 |

Table 3.4: Integer encoded script

We implement the Laplace transform taking the above integer codes as following. Let’s consider the following expression
(j+k)! (ia)jtaj+ak+ﬁ—1
< j! T(aj+ak+p)
0+k)! (ia)ol(x»OqL(karﬁfl

0! T(a-0+ak+p)
(14k)! (ia)lta»l+ak+ﬁfl

1! T(o-14+ak+p)
(2+K)! (£a)? (@ 2ak+p-1

2! T'(a-2+ak+p)

(n+k)! (+a)" rontak+p—1

T Tantak+p) G-

H
IS
2
+
T
=
=
N
H,
Q
S
=B
|
(al

—_ 5

+

+

where o, 8 > 0anda € RT.

Assume that

Go=20, G;=10, G, =20,

G3 =40, G4=20, Gs=30,

G =40, G7;=40, G,=0, forn>38.
By choosing « =2, f =1, k=0 and a = 2 in (3.3), we can suppose that,

< G- (22)F = G, k2K
f= G <2t2) - X lG"k(Zl(cz-‘,t- 1)) =L Gk(zi)i

k=0 k=0
_Gp 2% G2l Gyt
N o T2 T4
N Gs3-213 N Gy 2% N Gs- 251
3! 41 10!
G201  G7-2717  Gg-2848
+ r T e T
272 2214 2346
= 15417 Sr 414 T 45 o
241‘8 25t10 261‘12
+oA I8 S 18 o
27t14 28t16
14 17- )
+ T 16!

By applying Laplace transform to both sides, we get

LiF0} = L{GEy (27)}

212 2244 77414
= L{20+10-—+20~7+...+40,7}

2! 41 14!
_ 20 20 80 320 320 960 2560 5120
= Sttty ettt T

By taking modulo 128 on 20, 20, 80, 320, 320, 960, 2560, 5120, we have sequence which consists of 20, 20, 80, 64, 64, 64, 0, 0.

We transform each of these integer into their equivalent ASCII values (7 bit binary) and then apply cumulative XOR operation repetitively
until one bit is obtained. The technique is explicated taking binary stream corresponding to 20, i.e. 0010100 on Figure 3.1.
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1 0 0
1 0

0 1
1

1

Figure 3.1: Cumulative XOR Method on Binary sequence corresponding to 20 and MSB collection

Hence, the binary version of the encoded cipher character equivalent to 20 is 0011110. By applying similar method to another values, we
obtain the following table.

Laplace Coefficients Binary Equivalents Cumulative XOR Cipher Text (ASCII) Cipher Text (Charac-
ter)

20 0010100 0011110 30 AN

20 0010100 0011110 30 AN

80 1010000 1100110 102 f

64 0101000 1111111 127 LeD

64 0101000 1111111 127 LeD

64 0101000 1111111 127 LeD

0 0000000 0000000 0 A @

0 0000000 0000000 0 AN @

Table 3.5: Binary sequences corresponding to Laplace coefficients and their equivalent cipher characters

Therefore, secret message equivalent to ’Go” is A A A A fLeDLeDLeDA@A@”.

3.2. Decryption

The encrypted text characters in respect of the ASCII values correspond to 30, 30, 102, 127, 127, 127, 0 and 0. We transform these values
into their 7 binary bit streams and apply cumulative XOR operation to them to generate binary sequences corresponding to Laplace

coefficients. Therefore, we transform these coefficients back to their decimal values and perform the inverse Laplace transform as follows.

We take into consideration

s 15 34 56 40 64 576 1152 1792 4352
Co T S tetetytetartom ths o
- .
= = 3.4
j:OS2]+l ( )

By applying inverse Laplace transform to both sides of (3.4), we obtain

10-21.42  20.22.4*
T4
40-23./5 20.2%./8 30.25.410
o s T 1o
4026712 40.27 414
r T 1A
Consequently, we get Gy = 20, G| = 10, G, = 20, Gz =40, G4 = 20, G5 = 30, Gg = 40 and G7 = 40.

GE», (2;2) = 20204

Thus, integer values corresponding to DNA nucleotides are 20, 10, 20, 40, 20, 30, 40 and 40 which are transformed back to their equivalent
bases by utilizing Table 3.5.

As aresult, the DNA encoded text is coverted to CACTCGTT and utilizing Table 3.1 the binary sequence of original message is transformed
to 0100011101101111.
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Finally, we decompose the binary sequence into corresponding ASCII equivalent which generates the ASCII values of ”G” and

71 (01000111) and 111 (01101111), respectively. Therefore, the original message Go” is obtained.

LI}

O are

Example 3.1. Assume the plain text be string ’'PROFESSOR’. By applying our results in section 3, we have the following secret messages

A~ o~~~
w N
D T — —

AANIANAANT”” fora =1, k =0,
'AANAN<*RANQLeD’ fora=1, k=1,
'AAAT4aF ;" fora=3, k=0,

'Df 3LeD |*LeDA@’ fora =3, k =3,
"UxUN@LeDLeDAN@N@’ fora =35, k=5.

The results in Example 3.1 can be obtained by utilizing the codes below, which we write by the help of Python 3.8.5.

import string

import math

import re

string . ascii-lowercase

alph =

ascii_char_dic = {
507 @
: ,
S RTINS
51077~
: ,
»157:7°0”
57T
: ,
mo gy
: ,
5307 an
#3574
241707y
ng7
n537.757
ng Q..
56577 AP
: ,
571G
: ,
BTN
: ,
ng3.m g
ngQr .y
: ,
mggr.n >
210177 e”
210777k
»1137:7q”,
21197 7w

»317.0n

PP g
7487707
7547767

766”:"B”
727 :"H”
7787:"N”
847 T”
”90”:72”
7967 ¢

»1087:”
211477
»1207:”

}

def binary_operator(i):
list_.3 = []
while i >= 1:
list_3 .append (i
i=1// 2
return list_3[::—1]
def xor(list_z):
list_ex = []

Y1V AY
. )
R Thd
. s
»117:7"K” .”12”:7"L”
. ) . )
71677 P” n17”,”AQn
. ) . s

»2 1.7 U”
. >

X SRS A
. s

?’3637,7?$7?
. 5

”60”'” <n
. >

"1027:7 7,

r”, ”115”:”
X”, ”12]”:”y”’
”125”:”}”, ”126”:”~”,

list(string.ascii_-lowercase)

BPEFUES 48

7B,

ngr.maAGy
: )

35799, 9 A Y RINELES »
37:7°C”, 747:7"D”,
»gr .U A” R REREE i

: s . s
21377 M,
”187:""R”,
2937 AW

. s
”287’:”’\’\737,
v U3 v U337 0347
237770 *387:7&”, 7397: 7

P304 »4470 7 PA5P 0 7

s . s cs . s
2497717 »50”7Y »517.73”

s . s . B . s
»ggn. g »567:78” »57n.nQ”

s . s . 5 : s
6177 =" 2627 S 7637797
=, : s [ S
2677 7C” »687:7D” »69” "R
s . s . s . s
S ERELE B L VESLE &8 P gN L K
s . P . P . P
»797.70Q” »80”:"P” ”81”'”Q”
s . s . s . s
» Q5.7 28677V » Q77 W
> . P . P . B

7917 [” ’792”,”,\7” 7937:7]”
s . > . B .
29777 298”7 »QQ”.”

. P . P . B
”103”:”g”’ »104”:”h”, ”1057:
”109”:”m”, “110”:"n”, "111”:

s”, 7116”:7t”, ”1177:
»1227:7 27 »123%:
: s :

»197 .7

B R MR VAl
. )

732773:”'\[73 ,

”
17,

21277 :"LeD”

% 2)

for i in range(len(list_z)):

if 1 < len(list_z)—1:

list_ex .append(list_z [i]

return list_ex
def cumulative_xor(list_z):
list_xor = []
while len(list_z) > O:

list_xor .append(list_z [0])

list_.z = xor(list_z)
return list_xor

list_z[i+1])

» 14”7 "N”
. )

S”
s

P47 Y
A, G
PRI

297: ,

[T}
bl

74077,
758777
764”:.7@”,
”70”:"F”,
”76”:"L”,
”82”:"R”,
7887:7X”,

, 794777

100 ’.’1(3)6:’:””
7o, 71127:7p”
7’l.l”, ”118”:”V”

{”, 124777

s
s
s
)
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def cipher_numbers(list_y ):
list_sum = []
for i in range(len(list_y)):
list_sum .append ((2x=«(len(list_y)—1—i))*list_y[i])
return sum(list_sum)

def dna_privatekey_general(list_manipulated , list_-mod):
list_dna_privatekey = [int((i—j) / 128) for i, j in zip(list_manipulated , list_.mod)]
return list_dna_privatekey

def dna_encryption_general(a, n):
dic_nucleoid_-binary = {”00”:”A”, »01”:”C”, ”10”:"G”, "117:”T"}
dic_nucleoid_dec = {”A”:10, ”C”:20, ”G”:30, "T”:40}

mes = input(”Please enter an message for encryption: ”)
mes2 = list (mes)
ascii_list = [ord(i) for i in mes2]

list_binary = []
for i in ascii_list:
x = [str(j) for j in [0] + binary_operator(i)]
y = 77.join(Xx)
list_binary .append(y)
list_bin = []
for i in list_binary:
for j in 1i:
list_bin .append(j)
list_bin_2 = []
for i in range (0, len(list_bin), 2):
j = list_bin[i] + list_bin[i+1]
list_bin_2 .append(j)
list_nucleoid = []
for i in list_bin_2:
list_nucleoid.append(dic_nucleoid_binary[i])
list_coff = []
for i in list_nucleoid:
list_coff.append(dic_nucleoid_dec[i])
list_manipulated = [int(list_coff[i]*(math.factorial (i+n)/(math.factorial (i))=*(a=%%i)))
for i in range(len(list_coff))]
list_mod = [i % 128 for i in list_-manipulated]
list_bin_3 = []
for i in list_mod:
list_bin_3 .append(binary_operator (i))
list_bin_4 = []
for j in list_bin_3:
if len(j) < 7:
if j != []:
list_bin_4 .append((7—1len(j))*[0] + j)
else:
list_bin_4 .append (7+[0] + j)
else:
list_bin_4 .append(j[0:7])

list_.cum_xor = []

for i in list_bin_4:
list_cum_xor.append(cumulative_xor(i))

list_cipher_numbers = []
for i in list_cum_xor:

list_cipher_numbers .append(cipher_numbers(i))
list_encrypted = []
for i in list_cipher_numbers:

list_encrypted .append(ascii-char_dic[str(i)])
list_binary_full = [i for i in list_cum_xor]
list_binary_full_-2 = [j for i in list_cum_xor for j in 1i]
list_binary_plain = [j for i in list_bin_4 for j in 1i]
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print(7%7x114)

print (" Your encrypted message is: 7, ””.join(list_encrypted))

print ("%7x114)

print (" Your encrypted list is:”, list_encrypted)

print ("+”x114)

print (" Your private key is:”, dna_privatekey_general(list_manipulated , list_-mod))
print ("%”%114)

#print(list_binary)

#print(list_bin)

#print(list_cum_xor)

#print(list_coff)

print ("DNA bases:”,list_nucleoid)

print ("«"x114)

#print(list_binary_full)

#print(list_binary_plain)

print (" Results of monobit test:”)

print (monobit_test(list_binary_full))

print ("%”%114)

print (" phi test:”, phi_test(list_.binary_plain , list_binary_full_2))

def dna_decryption_general(a, n):
dic_nucleoid_-binary = {”00”:”A”, »01”:”C”, ”10”:"G”, "117:"T"}
dic_nucleoid_dec = {”A”:10, ”C”:20, ”G”:30, "T”:40}

dmes = input(”Please enter an secret message for decryption: )
dna_privatekey = input(”Please enter private key: 7).split(”, )
dna_list_privatekey = [int(i) for i in dna_privatekey]

#print(”dna_list_privatekey”,dna_list_privatekey)
#dmes_list = dmes.split(”, 7)
string _list = list(re.findall(r”’(.%?)’”, ’’.join(dmes)))
#print(string_list)
#print (7 string_list”, string_list)
list_keys = []
for i in string_list:
for k, 1 in ascii_char_dic.items ():
if 1 = 1:
list_keys .append (k)

#print (7 list_keys”,list_keys)

list_keys_num = [int(i) for i in list_keys]

#print (" list_.keys_num”,list_keys_num)

list_binary_x = [binary_operator(i) for i in list_keys_num]
#print (7 list_binary_x”,list_binary_x)

list_binary_xor = []

for j in list_binary_x:
if len(j) < 7:
if j != [1:
list_binary_xor .append((7—1len(j))=[0] + j)
else:
list_binary_xor .append(7«[0] + j)
else:
list_binary_xor .append(j[0:7])
#print (7 list_binary_xor”,list_binary_xor)

list_binary_-y = [cumulative_xor(i) for i in list_binary_xor]
#print (7 list_binary_y”,list_binary_y)
list_ciphers = [cipher_numbers(i) for i in list_binary_y ]

#print (7 list_ciphers”,list_ciphers)
list_.dec = [1 + 128%j for i, j in zip(list_ciphers, dna_list_privatekey)]
#print (7 list_dec”,list_dec)
list_manipulated = [int(list_dec[i] / (math.factorial (i+n)/(math. factorial (i))=(a%*xi)))
for i in range(len(list_dec))]
#print(”list_manipulated”,list_manipulated)
list_dna_nucleoid = []
for i in list_manipulated:
for k, 1 in dic_nucleoid_dec.items ():
if i ==1:
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list_.dna_nucleoid .append (k)
#print(”list_.dna_nucleoid”,list_.dna_nucleoid)
list_dna_binary = []
for i in list_dna_nucleoid:

for k, I in dic_nucleoid_binary.items ():
if 1 ==1:

list_dna_binary .append (k)
#print(”list_.dna_binary”,list_dna_binary)
list_final_bef = []
for i in range (0, len(list_dna_binary), 4):

list_final_bef .append(list_dna_binary[i:i+4])
#print (" list_final_bef”, list_final_bef)
list_final = []
for j in list_final_bef:
list_final .append (””.join(j))
#print(”list_final”,list_final)

list_sum = []
for j in list_final:
list_num = [int(i) for i in j]

list_sum . append (cipher_numbers (list_num))
#print (" list_sum”,list_sum )
list_final_words = []
for i in list_sum:

for k, 1 in ascii_char_dic.items ():

if str(i) == k:
list_final_words .append (1)

print ("DNA bases:”, list_dna_nucleoid)
print ("The original message: ” + .join(list_final_words))

2995

Before using phi coefficient test and monobit test for the results above, we want to provide some information on these test.

Numerous studies have been done to examine the reliability of a cryptographic algorithm. Inhomogeneity, frequency distribution, and bit rate
are usually utilized reliability techniques. The technique to be performed in this article is the monobit test. The monobit test is utilized to
determine whether the frequency of 0’s and 1’s in bit sequences in the encrypted text. Let and represent the number of 0’s and 1’s in bit
sequences respectively. The calculated value obtained with is compared with the critical of value at 1 degree of freedom. If the calculated
values of value is smaller than the critical of value, it means that the bit sequences passed the monobit test. The formula of the Monobit test
is denoted by

2
no—n
2= omm)”

n

where ng,n; and n represent the number of zeroes, ones, and both of them, respectively [39].

Correlation analysis used in statistics investigates whether there is a relationship between two or more variables. The phi coefficient will
be utilized to find the correlation value. The phi coefficient is the coefficient of the relationship between two variables with a binary data
structure. The goal is to get a completely different or low relationship between plain text and cipher text. If the obtained phi coefficient
approaches 1, there is a strong relationship between them. If the phi coefficient approaches 0, there is a very weak relationship between
them [40-42].

By using the table as follows,

y=11|y=0 | total
x=1 ni nio ny.
x=0 no1 noo no.
total n.q n.g n

Table 3.6: 2 x 2 table for two random variables x and y

we get the following phi coefficient formula

¢ — ™10 — 10701
Janonyng.

where ny1,n10,n91 and ngg denote the observation frequencies.

By utilizing the monobit test and correlation analysis, we have the following results for cipher texts in Example 3.1.
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Cipher Text 4 Cal?ulated value ‘ . Cal?ulated value ‘
Phi Coefficient | Monobit Test | Phi Coefficient | Monobit Test
AANIANAANT? 0.464150 2.571428 0.5 3.8415
ANAA<*R4ANQLeD 0.410720 0.285714 0.5 3.8415
AANT4;aF |, 0.292307 0.285714 0.5 3.8415
Df 3LeD [*LeDA@ 0.083333 1.142857 0.5 3.8415
UxUA@LeDLeDA@AN@ 0.203653 0.642857 0.5 3.8415

Table 3.7: Results for Monobit Test and Correlation Analysis

The values of Table 3.7 can be attained by utilizing following codes, which we write by means of Python 3.8.5.

def phi_test(list_1, list_2):
list-3 = [i for i in zip(list_-1, list_2)]

list_.oo = [i for in list_3 if = (1,1)]
list_oz = [i for in list_3 if == (1,0)]
list_zz = [i for in list_3 if == (0,0)]
list_.zo = [i for

in list_3 if
in list_3 if
in list_3 if

list_po = [i for 1] == 1]
list_.pz = [i for

list_op = [i for

[

[1] == 0]
i[0] == 1]
[

e e e e e e

i
i
i
in list_3 if i == (0,1)]
i
i
i
i

list_zp = [i1 for i in list_3 if 0] == 0]

a = (len(list_oo)*xlen(list_zz)) — (len(list_oz)*xlen(list_zo))

b = math.sqrt(len(list_op)*len(list_zp)xlen(list_po)=xlen(list_pz))
phi = a / b

return phi

def monobit_test(list_ex ):
list_z = []
list_zeros = []
list_ones = []
for i in list_ex:
for j in i:
list_z .append(j)
for k in list_z:
if k == 0:
list_zeros .append (k)
elif k == 1:
list_ones .append (k)
chi = (len(list_zeros) — len(list_ones))*=%2 / (len(list_zeros) + len(list_ones))
print (”Zeros:” ,len(list_zeros))
print(”Ones:”,len(list_ones))
print (chi)

The computed values of ¥2 and ¢ are less in relation to critical values of them. This implies that these binary streams corresponding to
cipher texts pass the Monobit test and correlation analysis in respect of phi coefficient. According to the correlation analysis, it is seen that
there is a weak relationship between the first text and the last text. In addition, the values obtained in the Monobit test show the power of the
function and transformation used.

4. Conclusions

In this study, a text that was handled by using DNA codes effectively was encrypted using the Mittag-Leffler function and Laplace transform,
and a new text with different characters was obtained. Here, the strength of the password created by applying the XOR operation in the
method has been increased. The difference of this study is the simultaneous use of the Mittag-Leffler function and the Laplace transform. At
the end of the study, the reliability of the encryption technique was checked with the Monobit test. The results obtained are quite good. In
addition, with the correlation test, it was examined whether there was a relationship between the first and the last text. As a result of this
examination, it was seen that there was an acceptable, weak relationship..
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