

Adlyaman University Journall of Science

Chen-like Inequalities on Submanifolds of Cosymplectic 3-Space Forms

Mehmet GÜLBAHAR ${ }^{1}$, Esra ERKAN ${ }^{2, *}$
${ }^{1}$ Harran University, Faculty of Arts and Sciences, Department of Mathematics, 63300, Şanlıurfa, Türkiye mehmetgulbahar@harran.edu.tr, ORCID: 0000-0001-6950-7633
${ }^{2}$ Harran University, Faculty of Arts and Sciences, Department of Mathematics, 63300, Şanlıurfa, Türkiye esraerkan@harran.edu.tr, ORCID: 0000-0003-0456-6418

Received: 18.01.2023
Accepted: 02.12.2023
Published: 31.12.2023

Abstract

In this paper, some equalities and inequalities involving the Riemannian curvature invariants are obtained on 3-semi slant submanifolds of cosymplectic 3-space forms. Obtained relations for 3-semi slant submanifolds are examined on 3-slant, invariant, and totally real submanifolds.

Keywords: Curvature; Submanifold; Cosymplectic 3-Space Form.

Kosimplektik 3-Uzay Formlarının Altmanifoldları Üzerinde Chen-tipi Eşitsizlikler

$\ddot{\mathrm{O}} \mathrm{z}$

Bu çalışmada kosimplektik 3-uzay formlarının 3-semi slant altmanifoldları üzerine Riemann eğrilik invaryantları içeren bazı eşitlik ve eşitsizlikler elde edilmiştir. 3-semi slant alt manifoldlar için elde edilen bağıntılar, 3-slant, invaryant ve total reel altmanifoldlar üzerinde incelenmiştir.

Anahtar Kelimeler: Eğrilik; Altmanifold; Kosimplektik 3-Uzay Form.

1. Introduction

The concept of contact 3 - manifolds was originated by Y. Kuo [1] and C. Udrişte [2], independently. With the introduction of this concept, some classifications of contact 3manifolds were presented by many authors. For mathematical and physical applications of contact 3 - manifolds, we refer to [3-9], etc.

After the definition of Chen's slant submanifolds (cf. [10]), the problem of studying the geometry of slant submanifolds attracted a lot of attention. From this viewpoint, these submanifolds of almost contact metric 3-manifolds were investigated by Malek and Balgeshir in [11, 12].

In the submanifold theory, the problem of finding basic relationships between curvature invariants is one of the most basic and interesting problems. In order to compare the curvature invariants of a Riemannian manifold and its submanifold, several inequalities were established by Chen [13-16], etc. Later, this problem has been studied by many authors in various submanifolds [17-24], etc.

In the first section of this study, some main formulas and notations for a Riemannian manifold and its submanifolds are expressed. In the second section, the definitions of contact 3manifolds and their submanifolds are given. An example of 3 -semi-slant submanifolds is presented. In the third section, some relations involving Ricci curvatures of cosymplectic 3space forms and their 3 -semi-slant, 3 -slant, invariant, and totally real submanifolds are examined. In the fourth section, some relations involving scalar curvatures and sectional curvatures of cosymplectic 3 -space forms and their 3 -semi-slant, 3 -slant, invariant and totally real submanifolds are obtained.

2. Preliminaries

Let (\tilde{M}, \tilde{g}) be a m-dimensional Riemannian manifold. The sectional curvature of $\Pi=\operatorname{Span}\{Y, Z\}$ is formulated by

$$
\tilde{K}(Y \wedge Z)=\frac{\tilde{g}(\tilde{R}(Y, Z) Z, Y)}{\tilde{g}(Y, Y) \tilde{g}(Z, Z)-\tilde{g}(Y, Z)^{2}},
$$

where \tilde{R} is the Riemannian curvature tensor field of (\tilde{M}, \tilde{g}). Let $\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ be an orthonormal basis of $T_{p} \tilde{M}$ at $p \in \tilde{M}$. The Ricci curvature for $e_{l}, l \in\{1,2, \ldots, m\}$ is formulated by

$$
\begin{equation*}
\tilde{R} i c\left(e_{l}\right)=\sum_{j \neq l}^{m} \tilde{K}\left(e_{l} \wedge e_{j}\right) \tag{1}
\end{equation*}
$$

and the scalar curvature at a point $p \in \tilde{M}$ is defined by

$$
\begin{equation*}
\tilde{\tau}(p)=\sum_{\mid \tilde{N} \cup<j \leq m} \tilde{K}\left(e_{l} \wedge e_{j}\right) . \tag{2}
\end{equation*}
$$

Let Π_{n} be an n-dimensional subsection of $T_{p} \tilde{M}$. If $n=m, \Pi_{m}=T_{p} \tilde{M}$. Let us choose an orthonormal basis $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ of Π_{n}. Then n-Ricci curvature of $e_{t}, t \in\{1,2, \ldots, n\}$, is formulated by

$$
\begin{equation*}
\tilde{R} i c_{\Pi_{n}}\left(e_{t}\right)=\sum_{j \neq t}^{n} \tilde{K}\left(e_{t} \wedge e_{j}\right) \tag{3}
\end{equation*}
$$

and n - scalar curvature of Π_{n} is formulated by

$$
\begin{equation*}
\tilde{\tau}_{\Pi_{n}}(p)=\sum_{\mathbb{N} \mathbb{N}<j \leq n} \tilde{K}\left(e_{l} \wedge e_{j}\right) . \tag{4}
\end{equation*}
$$

We note that if $n=m$, then $\tilde{R} i c_{\Pi_{n}}\left(e_{t}\right)=\tilde{R} i c_{T_{p} \tilde{M}}\left(e_{t}\right)$ and $\tilde{\tau}_{\Pi_{n}}(p)=\tilde{\tau}_{T_{p} \tilde{M}}(p)$.

Assume that (M, g) is a k-dimensional submanifold of (\tilde{M}, \tilde{g}). The Gauss and Weingarten formulas are formulated by

$$
\begin{equation*}
\nabla_{X} Y=\nabla_{X} Y+\sigma(X, Y) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla_{X} Y=-A_{N} X+\nabla_{X}^{\perp} N, \tag{6}
\end{equation*}
$$

where $X, Y \in T_{p} M, N \quad$ is \quad a \quad unit \quad normal \quad vector, $\quad \nabla_{X} Y, A_{N} X \in T_{p} M \quad$ and $\sigma(X, Y), \nabla_{X}^{\perp} N \in T_{p}^{\perp} M$. Here, σ is the second fundamental form, A_{N} is the shape operator and ∇^{\perp} is the normal connection of M. It is well known that σ is associated to A_{N} by the following formula:

$$
\begin{equation*}
\tilde{g}(\sigma(X, Y), N)=g\left(A_{N} X, Y\right) \tag{7}
\end{equation*}
$$

Denote the Riemannian curvature tensor of M by R. The Gauss equation is formulated by

$$
\begin{equation*}
g(R(X, Y) Z, W)=\tilde{g}(\tilde{R}(X, Y) Z, W)+\tilde{g}(\sigma(X, W), \sigma(Y, Z))-\tilde{g}(\sigma(X, Z), \sigma(Y, W)) \tag{8}
\end{equation*}
$$

for any $X, Y, Z, W \in T_{p} M$.

Let $\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}$ be an orthonormal basis of $T_{p} M$. The main curvature vector field \hbar is formulated by

$$
\begin{equation*}
\hbar=\frac{1}{k} \sum_{l=1}^{k} \sigma\left(e_{l}, e_{l}\right) . \tag{9}
\end{equation*}
$$

M is said to be totally geodesic if $\sigma=0$, and it is said to be minimal if $\hbar=0 . M$ is totally umbilical if and only if $\sigma(X, Y)=g(X, Y) \hbar$ is satisfied for all $X, Y \in T_{p} M$.

Let $\left\{e_{k+1}, e_{k+2}, \ldots, e_{m}\right\}$ be an orthonormal basis of $T_{p}^{\perp} M$ and e_{s} belongs to $\left\{e_{k+1}, e_{k+2}, \ldots, e_{m}\right\}$. Denote the intrinsic sectional curvature by $K\left(e_{l} \wedge e_{j}\right)$. In view of (8), if we put

$$
\begin{equation*}
\sigma_{l j}^{s}=\tilde{g}\left(\sigma\left(e_{l}, e_{j}\right), e_{s}\right) \quad \text { and } \quad\|\sigma\|^{2}=\sum_{l, j=1}^{k} \tilde{g}\left(\sigma\left(e_{l}, e_{j}\right), \sigma\left(e_{l}, e_{j}\right)\right), \tag{10}
\end{equation*}
$$

then we find

$$
\begin{equation*}
K\left(e_{l} \wedge e_{j}\right)=\tilde{K}\left(e_{l} \wedge e_{j}\right)+\sum_{s=k+1}^{m}\left(\sigma_{l l}^{s} \sigma_{j j}^{s}-\left(\sigma_{l j}^{s}\right)^{2}\right) \tag{11}
\end{equation*}
$$

From (11), it follows that

$$
\begin{equation*}
2 \tau(p)=2 \tilde{\tau}\left(T_{p} M\right)+n^{2}\|\hbar\|^{2}-\|\sigma\|^{2}, \tag{12}
\end{equation*}
$$

where

$$
\tilde{\tau}\left(T_{p} M\right)=\sum_{1 \leq l<j \leq k} \tilde{K}_{l j}
$$

Moreover, there exists the following relation:

$$
\begin{align*}
\|\sigma\|^{2}= & \frac{1}{2} k^{2}\|\hbar\|^{2}+\frac{1}{2} \sum_{s=k+1}^{m}\left(\sigma_{11}^{r}-\sigma_{22}^{r}-\cdots-\sigma_{k k}^{s}\right)^{2}+2 \sum_{s=k+1}^{m} \sum_{j=2}^{k}\left(\sigma_{1 j}^{s}\right)^{2} \\
& -2 \sum_{s=k+1}^{m} \sum_{2 \leq l<j \leq k}\left(\sigma_{l l}^{s} \sigma_{j j}^{s}-\left(\sigma_{l j}^{s}\right)^{2}\right) . \tag{13}
\end{align*}
$$

For the basic concepts dealing with Riemannian manifolds, we refer to [16].

The relative null space at a point p in M is given by [14]

$$
\begin{equation*}
N_{p}=\left\{X \in T_{p} M \mid \sigma(X, Y)=0 \text { for all } Y \in T_{p} M\right\} \tag{14}
\end{equation*}
$$

We note that N_{p} is also said to be the kernel of σ at p [25].

The Chen invariant δ_{M} for a Riemannian submanifold M is formulated by [26]

$$
\begin{equation*}
\delta_{M}(p)=\tau(p)-\inf (K)(p) \tag{15}
\end{equation*}
$$

where $\inf (K)(p)=\inf \{K(\Pi): \Pi$ is a plane $\}$.

3. Submanifolds of Contact 3-Space Forms

Definition 1. [1] A differentiable manifold \tilde{M} admitting an almost contact 3 - structure $\left(\xi_{l}, \eta_{l}, \varphi_{l}\right)_{l \in\{1,2,3\}}$ is said to be an almost contact $3-$ structure manifold. An almost contact $3-$ structure manifold is denoted by $\left(\tilde{M}, \xi_{l}, \eta_{l}, \varphi_{l}\right)_{l \in\{1,2,3\}}$.

For $\left(\tilde{M}, \xi_{l}, \eta_{l}, \varphi_{l}\right)_{l \in\{1,2,3\}}$, the following relations hold:

$$
\begin{equation*}
\varphi_{l} \xi_{j}=-\varphi_{j} \xi_{l}=\xi_{n}, \quad \eta_{l} \varphi_{j}=-\eta_{j} \varphi_{l}=\eta_{n}, \quad \eta_{l} \xi_{j}=0 \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
\varphi_{l} \circ \varphi_{j}-\eta_{j} \otimes \xi_{l}=-\varphi_{j} \circ \varphi_{l}+\eta_{l} \otimes \xi_{j}=\varphi_{n} \tag{17}
\end{equation*}
$$

where (l, j, n) is a cyclic permutation of $(1,2,3)$. If $\left(\tilde{M}, \xi_{l}, \eta_{l}, \varphi_{l}\right)_{l \in\{1,2,3\}}$ includes a Riemannian metric \tilde{g} given by

$$
\begin{equation*}
\tilde{g}\left(\varphi_{l} Y, \varphi_{l} Z\right)=\tilde{g}(Y, Z)-\eta_{l}(Y) \eta_{l}(Z) \tag{18}
\end{equation*}
$$

for any $Y, Z \in T_{p} \tilde{M}$, then $\left(\tilde{M}, \tilde{g}, \xi_{l}, \eta_{l}, \varphi_{l}\right)_{l \in\{1,2,3\}}$ is said to be an almost contact metric 3structure manifold. From the Eq. (18), we have

$$
\begin{equation*}
\tilde{g}\left(\varphi_{l} Y, Z\right)=-\tilde{g}\left(Y, \varphi_{l} Z\right) \tag{19}
\end{equation*}
$$

$\left(\tilde{M}, \tilde{g}, \xi_{l}, \eta_{l}, \varphi_{l}\right)_{l \in\{1,2,3\}}$ is called a cosymplectic 3 - manifold if

$$
\begin{equation*}
\tilde{\nabla} \varphi_{l}=0 \tag{20}
\end{equation*}
$$

is satisfied. It is said to be a Sasakian 3 - manifold if

$$
\begin{equation*}
\left(\tilde{\nabla}_{Y} \varphi_{l}\right) Z=\tilde{g}(Y, Z) \xi_{l}-\eta_{l}(Z) Y \tag{21}
\end{equation*}
$$

is provided.
In a similar manner to the concept of holomorphic sectional curvature on Hermitian or contact metric manifolds, we can state the concept of φ_{l}-holomorphic sectional curvature on $\left(\tilde{M}, \tilde{g}, \xi_{l}, \eta_{l}, \varphi_{l}\right)_{l \in\{1,2,3\}}$ in such a way:

Definition 2. [11] A plane Π is said to be a φ_{l}-section if there exists a unit vector $X \in T_{p} \tilde{M}$ orthogonal to ξ_{l}, where $\left\{X, \varphi_{l} X\right\}$ is an orthonormal basis on Π for some $l \in\{1,2,3\}$. The φ_{l} - holomorphic sectional curvature of a $\varphi_{l}-$ section is defined by

$$
\tilde{K}\left(X \wedge \varphi_{l} X\right)=\tilde{g}\left(\tilde{R}\left(X, \varphi_{l} X\right) \varphi_{l} X, X\right)
$$

A cosymplectic 3 -manifold $\left(\tilde{M}, \tilde{g}, \xi_{l}, \eta_{l}, \varphi_{l}\right)_{l\{\{1,2,3\}}$ becomes a cosymplectic 3 -space form if it is of constant φ_{l}-holomorphic sectional curvature c. A cosymplectic 3 - space form is shown by $\tilde{M}(c)$.

If $\tilde{M}(c)$ is a cosymplectic 3 - space form, then the Riemannian curvature is satisfied the following relation [1]:

$$
\begin{align*}
\tilde{R}(X, Y, Z, W)= & \frac{c}{4}\{g(X, W) g(Y, Z)-g(X, Z) g(Y, W) \\
& +\sum_{n=1}^{3}\left[g\left(X, \varphi_{n} W\right) g\left(Y, \varphi_{n} Z\right)-g\left(X, \varphi_{n} Z\right) g\left(Y, \varphi_{n} W\right)\right. \\
& -2 g\left(X, \varphi_{n} Y\right) g\left(Z, \varphi_{n} W\right)-g(X, W) \eta_{n}(Y) \eta_{n}(Z) \\
& +g(X, Z) \eta_{n}(Y) \eta_{n}(W)-g(Y, Z) \eta_{n}(X) \eta_{n}(W) \\
& \left.+g(Y, W) \eta_{n}(X) \eta_{n}(Z)\right], \tag{22}
\end{align*}
$$

for any $X, Y, Z, W \in \tilde{M}$.
Assume that (M, g) is a k-dimensional submanifold of $\left(\tilde{M}, \tilde{g}, \xi_{l}, \eta_{l}, \varphi_{l}\right)_{l \in\{1,2,3\}}$. For any vector field X in $T_{p} M$, we can write $\varphi_{l} X$ as follows:

$$
\begin{equation*}
\varphi_{l} X=P_{l} X+F_{l} X \tag{23}
\end{equation*}
$$

where $P_{l} X \in T_{p} M$ and $F_{l} X \in T_{p}^{\perp} M$ for $l \in\{1,2,3\}$.

We can express the following:

$$
\begin{equation*}
\left\|P_{l}\right\|^{2}=\sum_{j, n=1}^{k} g\left(P_{l} e_{j}, e_{n}\right)^{2} \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|P_{l} X\right\|^{2}=\sum_{n=1}^{k} g\left(P_{l} X, e_{n}\right)^{2} . \tag{25}
\end{equation*}
$$

(M, g) is said to be invariant if $F_{l}=0$ and it is said to be totally real if $P_{l}=0$ for each $l \in\{1,2,3\}$. Furthermore, (M, g) becomes 3 - slant if for each $l \in\{1,2,3\}$, the angle θ between $\varphi_{l} X$ and the tangent space $T_{p} M$ is constant for every p in M and every $X \neq 0$ which is not linearly dependent by ξ_{l} [12].

We remark that a 3 - slant submanifold becomes invariant when $\theta=0$ and it becomes totally real if $\theta=\frac{\pi}{2}$. Furthermore, the following classification could be stated:

Definition 3. [12] A submanifold (M, g) is said to be a 3 - semi-slant submanifold if we have three orthogonal distributions $\mathrm{D}_{1}, \mathrm{D}_{2}, \mathrm{D}_{3}$, where $\mathrm{D}_{3}=\operatorname{Span}\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\}$ and the following cases occur:
i) $T M=\mathrm{D}_{1} \oplus \mathrm{D}_{2} \oplus \mathrm{D}_{3}$,
ii) $\varphi_{i}\left(\mathrm{D}_{1}\right) \subset \mathrm{D}_{1}, \forall l \in\{1,2,3\}$,
iii) D_{2} is 3 - slant with $\theta \neq 0$.

It is clear that (M, g) is $3-$ slant if $\mathrm{D}_{1}=0$ and it becomes an invariant submanifold if $\theta=0$.

Example 1. Let us consider 11 - dimensional Euclidean space E^{11}. If we define

$$
\begin{aligned}
& \varphi_{1}\left(\left(x_{i}\right)_{i \in\{1, \ldots, 11\}}\right)=\left(-x_{2}, x_{1},-x_{3}, x_{4},-x_{7},-x_{8}, x_{5}, x_{6},--x_{11}, x_{10}\right) \\
& \varphi_{2}\left(\left(x_{i}\right)_{i \in\{1, \ldots, 11\}}\right)=\left(-x_{4},-x_{3}, x_{1}, x_{2},-x_{7},-x_{8}, x_{5}, x_{6}, x_{11}, 0, x_{9}\right), \\
& \varphi_{2}\left((x i)_{i \in\{1, \ldots, 11\}}\right)=\left(x_{2},-x_{1}, x_{3},-x_{4},-x_{7},-x_{8}, x_{5}, x_{6},-x_{10}, x_{9}, 0\right)
\end{aligned}
$$

such that $\xi_{1}=\partial x_{9}, \xi_{2}=\partial x_{10}, \xi_{3}=\partial x_{11}$ and $\eta_{1}, \eta_{2}, \eta_{3}$ are duals of $\xi_{1}, \xi_{2}, \xi_{3}$, respectively. We find $\left(\mathrm{E}^{11}, \xi_{l}, \eta_{l}, \varphi_{l}\right)_{l \in\{1,2,3\}}$ is an almost contact 3 - structure manifold.

Let us define the following submanifold of $\left(\mathrm{E}^{11}, \xi_{l}, \eta_{l}, \varphi_{l}\right)_{l \in\{1,2,3\}}$:

$$
M=\left\{\left(u_{1}, u_{2}, u_{3}, u_{4}, u_{5} \cos \alpha, u_{5} \sin \alpha, u_{6} \cos \beta, u_{6} \sin \beta, u_{7}, u_{8}, u_{9}\right)\right\}
$$

where $\alpha, \beta \in\left[0, \frac{\pi}{2}\right)$. In this case, we obtain

$$
\begin{aligned}
& Y_{1}=\partial x_{1}, \quad Y_{2}=\partial x_{2}, \quad Y_{3}=\partial x_{3}, \quad Y_{4}=\partial x_{4} \\
& Y_{5}=\cos \alpha \partial x_{5}+\sin \alpha \partial x_{6}, \quad Y_{6}=\cos \beta \partial x_{7}+\sin \beta \partial x_{8} \\
& \xi_{1}=\partial x_{9}, \quad \xi_{2}=\partial x_{10}, \quad \xi_{3}=\partial x_{11}
\end{aligned}
$$

and

$$
N_{1}=-\sin \alpha \partial x_{5}+\cos \alpha \partial x_{6}, \quad N_{2}=-\sin \beta \partial x_{7}+\cos \beta \partial x_{8},
$$

where $T_{p} M=\operatorname{Span}\left\{Y_{1}, Y_{2}, Y_{3}, Y_{4}, Y_{5}, Y_{6}, \xi_{1}, \xi_{2}, \xi_{3}\right\}, T_{p}^{\perp} M=\operatorname{Span}\left\{N_{1}, N_{2}\right\}$ and $\left\{\partial x_{1}, \ldots, \partial x_{11}\right\}$ is the natural basis of E^{11}. If we put $\mathrm{D}_{1}=\operatorname{Span}\left\{Y_{1}, Y_{2}, Y_{3}, Y_{4}\right\}, \mathrm{D}_{2}=\operatorname{Span}\left\{Y_{5}, Y_{6}\right\}$ and $\mathrm{D}_{3}=\operatorname{Span}\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\}$, then M becomes $3-$ semi invariant with $\theta=|\alpha-\beta|$.

4. Inequalities Involving Ricci Curvatures

Let us indicate the set of all unit vectors in $T_{p} M$ by $T_{p}^{1} M$.
Theorem 1. [27] Let M be a k-dimensional submanifold of (\tilde{M}, \tilde{g}). The following cases hold:
i) For any $X \in T_{p}^{1} M$, we get

$$
\begin{equation*}
\operatorname{Ric}(X) \leq \frac{1}{4} k^{2}\|\hbar\|^{2}+\tilde{R} i c_{T_{p} M}(X) \tag{26}
\end{equation*}
$$

Here $\tilde{R} c_{T_{p} M}(X)$ is the k-Ricci curvature of $X \in T_{p}^{1} M$.
ii) The equality case of (26) occurs for $X \in T_{p}^{1} M$ if and only if

$$
\left\{\begin{array}{c}
\sigma(X, Z)=0, \quad \text { for each } Z \perp X, \\
2 \sigma(X, X)=k \hbar(p) .
\end{array}\right.
$$

iii) The equality case of (26) occurs for each $X \in T_{p}^{1} M$ if and only if either p is a totally geodesic point or p is a totally umbilical point for $k=2$.

From Theorem 1, we can state:
Corollary 1. [28] For any Riemannian submanifold, any two of the below three cases refer to the other one:
i) X satisfies the equality case of (26).
ii) $\hbar(p)=0$.
iii) $X \in N_{p}$.

Now, we assume that $\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\}$ is tangent to M and $X \in T_{p}^{1} M$ throughout this paper.
Lemma 1. For any k-dimensional submanifold of $\tilde{M}(c)$. We find

$$
\begin{align*}
& \tilde{K}\left(e_{l} \wedge e_{j}\right)=\frac{c}{4}\left\{1+\sum_{n=1}^{3}\left[3 g\left(P_{n} e_{l}, e_{j}\right)^{2}-\eta_{n}^{2}\left(e_{j}\right)-\eta_{n}^{2}\left(e_{l}\right)\right]\right\} \tag{27}\\
& \tilde{R} c_{T_{p} M}(X)=\frac{c}{4}\left\{(n-4)+\sum_{n=1}^{3}\left[3\left\|P_{n} X\right\|^{2}+(2-k) \eta_{n}^{2}(X)\right]\right\} \tag{28}\\
& \tilde{\tau}_{T_{p} M}(p)=\frac{c}{8}\left\{(k-1)(k-6)+3 \sum_{n=1}^{3}\left\|P_{n}\right\|^{2}\right\} . \tag{29}
\end{align*}
$$

Proof. From (22), we have

$$
\begin{aligned}
\tilde{g}\left(\tilde{R}\left(e_{l}, e_{j}\right) e_{j}, e_{l}\right)= & \frac{c}{4}\left\{g\left(e_{l}, e_{l}\right) g\left(e_{j}, e_{j}\right)-g\left(e_{l}, e_{j}\right) g\left(e_{j}, e_{l}\right)\right. \\
& +\sum_{n=1}^{3}\left[g\left(e_{l}, \varphi_{n} e_{l}\right) g\left(e_{j}, \varphi_{n} e_{j}\right)-g\left(e_{l}, \varphi_{n} e_{j}\right) g\left(e_{j}, \varphi_{n} e_{l}\right)\right. \\
& -2 g\left(e_{l}, \varphi_{n} e_{j}\right) g\left(e_{j}, \varphi_{n} e_{l}\right)-g\left(e_{l}, e_{l}\right) \eta_{n}\left(e_{j}\right) \eta_{n}\left(e_{j}\right) \\
& +g\left(e_{l}, e_{j}\right) \eta_{n}\left(e_{j}\right) \eta_{n}\left(e_{l}\right)-g\left(e_{j}, e_{j}\right) \eta_{n}\left(e_{l}\right) \eta_{n}\left(e_{l}\right) \\
& \left.\left.+g\left(e_{j}, e_{l}\right) \eta_{n}\left(e_{l}\right) \eta_{n}\left(e_{j}\right)\right]\right\},
\end{aligned}
$$

which is equivalent to (27). In view of (1) and (27), we find

$$
\tilde{R} i c_{T_{p} M}\left(e_{1}\right)=\frac{c}{4}\left\{(k-1)+\sum_{n=1}^{3}\left[3 \sum_{j=1}^{k} g\left(P_{n} e_{1}, e_{j}\right)^{2}+(2-k) \sum_{j=1}^{k} \eta_{n}^{2}\left(e_{1}\right)\right]\right\} .
$$

Putting $e_{1}=X$ and using (25) in the last equation, we obtain (28). From (2) and (28), we get

$$
\tilde{\tau}_{T_{p} M}(p)=\frac{c}{8}\left\{k(k-4)+\sum_{l=1}^{k} \sum_{n=1}^{3}\left[3\left\|P_{n} e_{l}\right\|^{2}+(2-k) \eta_{n}^{2}\left(e_{l}\right)\right]\right\} .
$$

Considering (24) in the last equation, we obtain (29).
In view of Theorem 1 and (28), we obtain
Theorem 2. For any k - dimensional submanifold of $\tilde{M}(c)$, we have the following cases:
i) For any $X \in T_{p}^{1} M$, we get

$$
\begin{equation*}
\operatorname{Ric}(X) \leq \frac{1}{4} k^{2}\|\hbar\|^{2}+\frac{c}{4}\left\{(k-4)+\sum_{n=1}^{3}\left[3\left\|P_{n} X\right\|^{2}+(2-k) \eta_{n}^{2}(X)\right]\right\} . \tag{30}
\end{equation*}
$$

ii) The equality case of (30) occurs for $X \in T_{p}^{1} M$ if and only if

$$
\left\{\begin{array}{c}
\sigma(X, Z)=0, \quad \text { for each } Z \perp X, \\
\sigma(X, X)=\frac{k}{2} \hbar(p) .
\end{array}\right.
$$

iii) The equality case of (30) occurs for each $X \in T_{p}^{1} M$ if and only if p is a totally geodesic point.

From Theorem 2, we immediately have
Corollary 3. For k-dimensional submanifold of $\tilde{M}(c)$, any two of the below three cases refer to the other one:
i) X satisfies the equality case of (30).
ii) $\hbar(p)=0$.
iii) $X \in N_{p}$.

Definition 4. Let D be a distribution on M.
i) If $\sigma(X, Z)=0$ is satisfied for all $X, Z \in \mathrm{D}$, then M is said to be D - geodesic.
ii) If there exists a smooth function λ on M satisfying $\sigma(X, Z)=\lambda g(X, Z)$ for each $X, Z \in \mathrm{D}$, then M is called D - umbilical.

Theorem 3. For any k-dimensional 3 -semi-slant submanifold, the following cases occur:
i) For every unit $X \in \mathrm{D}_{1}$, we get

$$
\begin{equation*}
\operatorname{Ric}(X) \leq \frac{1}{4} k^{2}\|\hbar\|^{2}+\frac{c}{4}(k+5) \tag{3}
\end{equation*}
$$

ii) The equality case of (31) is true for each $X \in \mathrm{D}_{1}$ at $p \in M$ if and only if M is $\mathrm{D}_{1}-$ geodesic.
iii) For every unit $Y \in \mathrm{D}_{2}$, we get
$\operatorname{Ric}(Y) \leq \frac{1}{4} k^{2}\|\hbar\|^{2}+\frac{c}{4}\left\{(k-4)+9 \cos ^{2} \theta\right\}$.
iv) The equality case of (32) is true for all $X \in \mathrm{D}_{2}$ at $p \in M$ if and only if M is $\mathrm{D}_{2}-$ geodesic.

Proof. If $X \in \mathrm{D}_{1}$, we obtain

$$
\left\|P_{n} X\right\|^{2}=1, \eta_{n}(X)=0 \text { and } \sum_{n=1}^{3} \sum_{j=1}^{k} \eta_{n}\left(e_{j}\right)=3 .
$$

Using these facts in (28), we obtain (31). The equality case of (31) occurs for each $X \in \mathrm{D}_{1}$ if and only if $\sigma(X, Z)=0$ for all $X, Z \in \mathrm{D}_{1}$. This implies that M is D_{1}-geodesic.

If X belongs to D_{1}, we obtain

$$
\sum_{n=1}^{3}\left\|P_{n} X\right\|^{2}=3 \cos ^{2} \theta, \eta_{n}(X)=0 \text { and } \sum_{n=1}^{3} \sum_{j=1}^{k} \eta_{n}\left(e_{j}\right)=3 .
$$

Using these facts in (29), we obtain (32). The equality case of (32) occurs for each $Y \in \mathrm{D}_{2}$ if and only if $\sigma(Y, Z)=0$ for all $Y, Z \in \mathrm{D}_{2}$. This implies that M is D_{2}-geodesic.

In view of Theorem 3, we find

Theorem 4. For any k-dimensional submanifold of $\tilde{M}(c)$, we find the following cases:
i) For the Ricci tensor S of M, we have the following table:

Table 1:

	M	Inequality		
(1)	3 - slant	$S \leq\left(\frac{1}{4} k^{2}\\|\hbar\\|^{2}+\frac{c}{4}\left\{(k-4)+9 \cos ^{2} \theta\right\}\right) g$.		
(2)	invariant	$S \leq\left(\frac{1}{4} k^{2}\\|\hbar\\|^{2}+\frac{c}{4}(k+5)\right) g$.		

(3)	totally real	$S \leq\left(\frac{1}{4} k^{2}\\|\hbar\\|^{2}+\frac{c}{4}(k-1)\right) g$.

ii) The equality case of $(1)-(3)$ occurs if and only if M is a totally geodesic submanifold.

5. Inequalities Involving Scalar Curvatures

Lemma 2. [29] If $a_{1}, \ldots, a_{k}(k>1)$ are real numbers, then

$$
\begin{equation*}
\frac{1}{k}\left(\sum_{l=1}^{k} a_{l}\right)^{2} \leq \sum_{l=1}^{k} a_{l}^{2} \tag{33}
\end{equation*}
$$

is satisfied. The equality case of (33) occurs if and only if $a_{1}=a_{2}=\cdots=a_{k}$.

Theorem 5. For any k-dimensional submanifold of $\tilde{M}(c)$. Then

$$
\begin{equation*}
\tau(p) \leq \frac{k(k-1)}{2}\|\hbar\|^{2}+\frac{c}{8}\left\{(k-1)(k-6)+3 \sum_{n=1}^{3}\left\|P_{n}\right\|^{2}\right\} \tag{34}
\end{equation*}
$$

is satisfied. The equality case of (34) is true for p in M if and only if p is a totally umbilical point.

Proof. Assume that e_{k+1} is parallel to $\hbar(p)$ and e_{1}, \ldots, e_{k} diagonalize $A_{e_{k+1}}$. In this case, we can write

$$
\begin{equation*}
A_{e_{k+1}}=\operatorname{diag}\left(\sigma_{11}^{k+1}, \sigma_{22}^{k+1}, \ldots, \sigma_{k k}^{k+1}\right) \tag{35}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{e_{s}}=\left(\sigma_{l j}^{s}\right), \quad \operatorname{trace} A_{e_{s}}=\sum_{l=1}^{k} \sigma_{l l}^{s}=0 \tag{36}
\end{equation*}
$$

for each $l, j=1, \ldots, k$ and $s=k+2, \ldots, m$. From (12), (35) and (36), we get

$$
\begin{equation*}
2 \tau(p)=\frac{c}{4}\left\{(k-1)(k-6)+3 \sum_{n=1}^{3}\left\|P_{n}\right\|^{2}\right\}+k^{2}\|\hbar\|^{2}-\sum_{l=1}^{k}\left(\sigma_{l l}^{k+1}\right)^{2}-\sum_{s=k+2}^{m} \sum_{l, j=1}^{k}\left(\sigma_{l j}^{s}\right)^{2} . \tag{37}
\end{equation*}
$$

Considering Lemma 2, we arrive at

$$
\begin{equation*}
k\|\hbar\|^{2} \leq \sum_{l=1}^{k}\left(\sigma_{l l}^{k+1}\right)^{2} \tag{38}
\end{equation*}
$$

From (37) and (38), the eq. (34) could be obtained. If the equality situation of (34) occurs, from Lemma 2, we find

$$
\sigma_{11}^{k+1}=\sigma_{22}^{k+1}=\cdots=\sigma_{k k}^{k+1} \quad \text { and } \quad A_{e_{s}}=0
$$

The last equation implies that p is a totally umbilical point. The other direction of proof is easy to follow.

For any k-dimensional 3 -semi-slant submanifold of $\tilde{M}(c)$, we put $\operatorname{dimD} D_{1}=s_{1}$, $\operatorname{dimD}_{2}=s_{2}$ and $k=s_{1}+s_{2}+3$. Then, we have the following:

Theorem 6. For any k-dimensional 3 -semi-slant submanifold of $\tilde{M}(c)$, we find

$$
\begin{equation*}
\tau(p) \leq \frac{k(k-1)}{2}\|\hbar\|^{2}+\frac{c}{8}\left\{(k-1)(k-6)+9\left(s_{1}+2+s_{2} \cos ^{2} \theta\right)\right\} . \tag{39}
\end{equation*}
$$

The equality case of (39) is true for p in M if and only if p is a totally umbilical point.

Proof. If M is $3-$ semi-slant, it can be found

$$
\begin{equation*}
\sum_{n=1}^{3}\left\|P_{n}\right\|^{2}=3 s_{1}+6+3 s_{2} \cos ^{2} \theta \tag{40}
\end{equation*}
$$

Considering (40) in Theorem 5, the proof is easy to follow.

As a result of Theorem 6, we also have the following:

Corollary 4. For any k-dimensional submanifold M of $\tilde{M}(c)$,
i) we have the following table:

Table 2:

	M	Inequality		
(1)	3 - slant	$\tau(p) \leq \frac{k(k-1)}{2}\\|\hbar\\|^{2}+\frac{c}{8}\left\{(k-1)(k-6)+9\left(\left(s_{1}+s_{2}\right) \cos ^{2} \theta+2\right)\right\}$.		
(2)	invariant	$\tau(p) \leq \frac{k(k-1)}{2}\\|\hbar\\|^{2}+\frac{c}{8}\{(k-1)(k+3)\}$.		
(3)	totally real	$\tau(p) \leq \frac{k(k-1)}{2}\\|\hbar\\|^{2}+\frac{c}{8}\left\{k^{2}-7 k+24\right\}$.		

ii) the equality case of (1)-(3) for each case is satisfied if and only if p is a totally umbilical point.

Proof. If M is $3-$ slant, then it can be obtained

$$
\begin{equation*}
\sum_{n=1}^{3}\left\|P_{n}\right\|^{2}=3\left(s_{1}+s_{2}\right) \cos ^{2} \theta+6 \tag{41}
\end{equation*}
$$

Putting (41) in (34), we get the first case of Table 2.

Consider the fact that $\varphi_{l} \xi_{j}=\xi_{n}$, if M is invariant, then we find

$$
\begin{equation*}
\sum_{n=1}^{3}\left\|P_{n}\right\|^{2}=3\left(s_{1}+s_{2}\right)+6=3(k-1) \tag{42}
\end{equation*}
$$

Putting (42) in (34), we get the second case of Table 2.

Considering the fact that $\varphi_{l} \xi_{j}=\xi_{n}$, if M is totally real, then we find

$$
\begin{equation*}
\sum_{n=1}^{3}\left\|P_{n}\right\|^{2}=6 \tag{43}
\end{equation*}
$$

Putting (43) in (34), we get the third case of Table 2.

The proof of ii) is easy to follow from Theorem 6.

Theorem 7. For any k-dimensional submanifold of $\tilde{M}(c)$, we have

$$
\begin{equation*}
\tau(p) \leq \frac{1}{2} k^{2}\|\hbar\|^{2}+\frac{c}{8}\left\{(k-1)(k-6)+3 \sum_{n=1}^{3}\left\|P_{n}\right\|^{2}\right\} \tag{44}
\end{equation*}
$$

The equality case of (44) occurs for p in M if and only if p is a totally geodesic point.

Proof. The proof is easy to follow by (12) and (29).

As a result of Theorem 7, we find the following:

Corollary 5. For any k - dimensional 3 - semi-slant submanifold of $\tilde{M}(c)$, we have

$$
\begin{equation*}
\tau(p) \leq \frac{1}{2} k^{2}\|\hbar\|^{2}+\frac{c}{8}\left\{(k-1)(k-6)+9\left(s_{1}+2+s_{2} \cos ^{2} \theta\right)\right\} \tag{45}
\end{equation*}
$$

The equality case of (45) occurs for p in M if and only if p is a totally geodesic point.

Corollary 6. For any k-dimensional submanifold of $\tilde{M}(c)$,
i) we have the following table:

Table 3:

	M	Inequality		
(1)	3 - slant	$\tau(p) \leq \frac{1}{2} k^{2}\\|\hbar\\|^{2}+\frac{c}{8}\left\{(k-1)(k-6)+9\left(\left(s_{1}+s_{2}\right) \cos ^{2} \theta+2\right)\right\}$.		
(2)	invariant	$\tau(p) \leq \frac{1}{2} k^{2}\\|\hbar\\|^{2}+\frac{c}{8}\{(k-1)(k+3)\}$.		
(3)	totally real	$\tau(p) \leq \frac{1}{2} k^{2}\\|\hbar\\|^{2}+\frac{c}{8}\left\{k^{2}-7 k+24\right\}$.		

ii) The equality case of (1)-(3) occurs if and only if p is a totally geodesic point.

We need the following lemma for later uses:

Lemma 3. Let $a_{1}, \ldots, a_{k}, a(k>2)$ be real numbers satisfying

$$
\begin{equation*}
\left(\sum_{l=1}^{k} a_{l}\right)^{2}=(k-1)\left(\sum_{l=1}^{k} a_{l}^{2}+a\right) \tag{46}
\end{equation*}
$$

Then

$$
2 a_{1} a_{2} \geq a
$$

is satisfied if and only if we find

$$
a_{1}+a_{2}=a_{3}=\cdots=a_{k} .
$$

Let $\left\{e_{1}, \ldots, e_{k}\right\}$ be an orthonormal basis and $\Pi=\operatorname{Span}\left\{e_{1}, e_{2}\right\}$. We define

$$
\begin{equation*}
\left|\left|P_{n}\right|_{\pi^{\perp}} \|^{2}=\sum_{j, t=3}^{k} g\left(P_{n} e_{t}, e_{j}\right)^{2} .\right. \tag{47}
\end{equation*}
$$

Then we have

Theorem 8. Let M be a k-dimensional $(k \geq 3)$ submanifold of $\tilde{M}(c)$. Then, for each point $p \in M$ and each φ_{l}-plane section $\Pi=\operatorname{Span}\left\{e_{1}, e_{2}\right\}$ such that $\varphi_{l} e_{1}=e_{2}$, we have

$$
\begin{equation*}
\tau(p)-K\left(e_{1} \wedge e_{2}\right) \leq \frac{k^{2}(k-2)}{2(k-1)}\|\hbar\|^{2}+\frac{c}{8}\left\{\left(k^{2}-7 k+4\right)+3\left\|\left.P_{n}\right|_{\pi^{\perp}}\right\|^{2}\right\} . \tag{48}
\end{equation*}
$$

The equality case (48) occurs at p in M if and only if there exists an orthonormal basis $\left\{e_{k+1}, \ldots, e_{m}\right\}$ of $T_{p}^{\perp} M$ such that the shape operators $A_{e_{s}}$ take the following forms:

$$
\begin{align*}
& A_{e_{k+1}}=\left(\begin{array}{ccc}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & (a+b) I_{k-2}
\end{array}\right), \tag{49}\\
& A_{e_{s}}=\left(\begin{array}{ccc}
c_{s} & d_{s} & 0 \\
d_{s} & -c_{s} & 0 \\
0 & 0 & 0_{k-2}
\end{array}\right), \quad s \in\{k+2, \ldots, m\} . \tag{50}
\end{align*}
$$

Proof. Assume that $\hbar(p)$ is in the direction of e_{k+1} and e_{1}, \ldots, e_{k} diagonalize $A_{e_{k+1}}$. In this case, $A_{e_{s}}$ take the forms (35) and (36). Thus, we can write

$$
\begin{equation*}
\left(\sum_{l=1}^{k} \sigma_{l l}^{k+1}\right)^{2}=(k-1)\left(\sum_{l=1}^{k}\left(\sigma_{l l}^{k+1}\right)^{2}+\sum_{l \neq j=1}^{k}\left(\sigma_{l j}^{k+1}\right)^{2}+\sum_{s=k+2}^{m} \sum_{l, j=1}^{k}\left(\sigma_{l j}^{s}\right)^{2}+\omega\right) \tag{51}
\end{equation*}
$$

such that

$$
\begin{equation*}
\omega=2 \tau(p)-\frac{c}{8}\left\{(k-1)(k-6)+3\left\|P_{n}\right\|^{2}\right\}-\frac{k^{2}(k-2)}{k-1}\|\hbar\|^{2} \tag{52}
\end{equation*}
$$

Applying Lemma 3 to (51), we find

$$
\begin{equation*}
2 \sigma_{11}^{k+1} \sigma_{22}^{k+1} \geq \omega+\sum_{l \neq j=1}^{k}\left(\sigma_{l j}^{k+1}\right)^{2}+\sum_{s=k+2 l, j=1}^{m} \sum_{l j}^{k}\left(\sigma_{l j}^{s}\right)^{2} . \tag{53}
\end{equation*}
$$

Using (53) in (27), it also follows that

$$
\begin{align*}
K\left(e_{1} \wedge e_{2}\right) \geq & \frac{c}{4}\left\{1+\sum_{n=1}^{3}\left[3 g\left(\varphi_{n} e_{1}, e_{2}\right)^{2}-\eta_{n}^{2}\left(e_{1}\right)-\eta_{n}^{2}\left(e_{2}\right)\right]\right\} \\
& +\frac{1}{2} \omega+\sum_{s=k+2}^{m} \sum_{j>2}\left\{\left(\sigma_{1 j}^{s}\right)^{2}+\left(\sigma_{2 j}^{s}\right)^{2}\right\}+\frac{1}{2} \sum_{s=k+2}^{m}\left(\sigma_{11}^{s}+\sigma_{22}^{s}\right)^{2} \tag{54}\\
& +\frac{1}{2} \sum_{s=k+2}^{m} \sum_{l, j>2}\left(\sigma_{l j}^{s}\right)^{2}
\end{align*}
$$

or we have

$$
\begin{equation*}
K\left(e_{1} \wedge e_{2}\right) \geq \frac{c}{4}\left\{1+\sum_{n=1}^{3}\left[3 g\left(\varphi_{n} e_{1}, e_{2}\right)^{2}-\eta_{n}^{2}\left(e_{1}\right)-\eta_{n}^{2}\left(e_{2}\right)\right]\right\}+\frac{1}{2} \omega \tag{55}
\end{equation*}
$$

In view of (52) and (55), we get (48).

If the equality case of (48) occurs, then we find

$$
\left\{\begin{array}{cc}
\sigma_{1 j}^{k+1}=\sigma_{2 j}^{k+1}=0, \quad j=n+1, \ldots, k \tag{56}\\
\sigma_{l j}^{s}=0, & l, j=n+1, \ldots, k \\
\sigma_{11}^{s}+\sigma_{22}^{s}=0 &
\end{array}\right.
$$

for $s=k+2, \ldots, m$. From Lemma 3, it can be found

$$
\begin{equation*}
\sigma_{11}^{k+1}+\sigma_{22}^{k+1}=\sigma_{33}^{k+1}=\cdots=\sigma_{k k}^{k+1} \tag{57}
\end{equation*}
$$

which shows that $A_{e_{s}}$ becomes as in (49) and (50).

In view of Theorem 8 , we get

Corollary 7. Let M be a k-dimensional 3 -semi-slant submanifold of $\tilde{M}(c)$. For each $\varphi_{l}-$ plane section $\Pi=\operatorname{Span}\left\{e_{1}, e_{2}\right\}$, we have

$$
\begin{equation*}
\tau(p)-K\left(e_{1} \wedge e_{2}\right) \leq \frac{k^{2}(k-2)}{2(k-1)}\|\hbar\|^{2}+\frac{c}{8}\left\{k^{2}-7 k+14+9\left(s_{1}+s_{2} \cos ^{2} \theta\right)\right\} \tag{58}
\end{equation*}
$$

The equality case of (58) is satisfied if and only if $A_{e_{s}}$ becomes as in (49) and (50).

Proof. Under this assumption, we find

$$
\begin{equation*}
\left\|\left|P_{n}\right|_{\pi^{\perp}}\right\|^{2}=3\left(s_{1}+s_{2} \cos ^{2} \theta\right) \tag{59}
\end{equation*}
$$

Using (59) in (48), the proof could be obtained.

Corollary 8. Let M be a k-dimensional submanifold of $\tilde{M}(c)$ and $\Pi=\operatorname{Span}\left\{e_{1}, e_{2}\right\}$ be a $\varphi_{l}-$ section.
i) We get the below table:

Table 4:

	M	Inequality		
(1)	invariant	$\tau(p)-K\left(e_{1} \wedge e_{2}\right) \leq \frac{k^{2}(k-2)}{2(k-1)}\\|\hbar\\|^{2}+\frac{c}{8}\left\{k^{2}+2 k-15\right\}$		
(2)	totally real	$\tau(p)-K\left(e_{1} \wedge e_{2}\right) \leq \frac{k^{2}(k-2)}{2(k-1)}\\|\hbar\\|^{2}+\frac{c}{4}\left\{k^{2}-7 k+32\right\}$.		

ii) The equality case of (1)-(2) is satisfied if and only if $A_{e_{s}}$ becomes as in (49) and (50).

Proof. Assume that M is invariant. In this case, we find

$$
\begin{equation*}
\left|\left|P_{n}\right|_{\pi^{\perp}} \|^{2}=3\left(s_{1}+s_{2}\right)=3(k-3)\right. \tag{60}
\end{equation*}
$$

Using (60) in (48), we obtain the first case of Table 4.

If M is totally real, then we have

$$
\begin{equation*}
\left\|\left.P_{n}\right|_{\pi^{\perp}}\right\|^{2}=6 \tag{61}
\end{equation*}
$$

Using (61) in (48), we obtain the second case of Table 4.

The proof of ii) is straightforward from Theorem 8.

References

[1] Kuo, Y., On almost contact 3-structure, Tôhoku Mathematical Journal (2) 22, 325-332, 1970.
[2] Udrişte, C., Structure presque coquaternioniennes, Bulletin Mathématique de la Société des Sciences Mathématiques de la République Socialiste de Roumanie, Nouvelle Série, 13, 487507, 1969.
[3] Balgeshir, M.B.K., Point-wise slant submanifolds in almost contact geometry, Turkish Journal of Mathematics, 40, 657-664, 2006.
[4] Boyer, C. P., Galicki, K., 3-Sasakian manifolds, arXiv preprint hep-th/9810250, 1998.
[5] Galicki, K., Salamon, S., Betti numbers of 3-Sasakian manifold, Geometriae Dedicata, 63, 45-68, 1996.
[6] Gibbons, G.W., Rychenkova, P., Cones, tri-Sasakian structures and superconformal invariance, Physics Letters B, 443, 138-142, 1998.
[7] Kashiwada, T., On a contact 3-structure, Mathematische Zeitschrift, 238, 829-832, 2001.
[8] Mann, B., Galicki, K., Boyer, C.P., The geometry and topology of 3-Sasakian manifolds, Journal für die. reine und angewandte Mathematik, 455, 183-220, 1994.
[9] Montano, B. C., De Nicola, A., 3-Sasakian manifolds, 3-cosymplectic manifolds and Darboux theorem, Journal of Geometry and Physics, 57, 2509-2520, 2007.
[10] Chen, B.-Y., Geometry of slant submanifolds, Katholieke Universiteit Leuven, 1990.
[11] Malek, F., Balgeshir, M.B.K., Slant submanifolds of almost contact metric 3-structure manifolds, Mediterranean Journal of Mathematics, 10, 1023-1033, 2013.
[12] Malek, F., Balgeshir, M.B.K., Semi-slant and bi-slant submanifolds of almost contact metric 3-structure manifolds, Turkish Journal of Mathematics, 37, 1030-1039, 2013.
[13] Chen B.-Y., Mean curvature and shape operator of isometric immersions in real space forms, Glasgow Mathematical Journal, 38, 87-97, 1996.
[14] Chen B.-Y., Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimensions, Glasgow Mathematical Journal, 41, 33-41, 1999.
[15] Chen B.-Y., Riemannian DNA, inequalities and their applications, Tamkang Journal of Science and Engineering, 3, 123-130, 2000.
[16] Chen B.-Y., Pseudo-Riemannian geometry, δ-invariants and applications, World Scientific Publishing, 2011.
[17] Akgün, A., Gülbahar, M., Bi-slant submanifolds of an S manifold, Arab Journal of Mathematical Sciences, 2021.
[18] Li, Y., Khatri, M., Singh, J.P., Chaubey, S.K., Improved Chen's inequalities for submanifolds of generalized Sasakian-space-forms, Axioms, 11, 324, 2022.
[19] Özgür, C., Chen inequalities for submanifolds of a cosymplectic space form with a semi-symmetric metric connection, Analele Stiintifice Ale Universitatii Al. İ. Cuza Din İasi-Serie Noua-Matematica, 58, 2012.
[20] Poyraz, N.Ö., Chen inequalities on spacelike hypersurfaces of a GRW spacetime, Differential Geometry and its Applications, 81, 101863, 2022.
[21] Poyraz, N.Ö., Doğan, B., Yaşar, E., Chen inequalities on lightlike hypersurface of a Lorentzian manifold with semi-symmetric metric connection, International Electronic Journal of Geometry, 10, 1-14, 2017.
[22] Slesar, V., Şahin, B., Vilcu, G.E., Inequalities for the Casorati curvatures of slant submanifolds in quaternionic space forms, Journal of Inequalities and Applications, 2014, 1-10, 2014.
[23] Siddiqui, A.N., Chen, B.Y., Bahadir, O., Statistical solitons and inequalities for statistical warped product submanifolds. Mathematics, 7, 797, 2019.
[24] Tripathi, M.M., Gülbahar, M., Kılıç, E., Keleş, S., Inequalities for scalar curvature of pseudo-Riemannian submanifolds, Journal of Geometry and Physics, 112, 74-84, 2017.
[25] Chen, B.-Y., On Ricci curvature of isotropic and Langrangian submanifolds in complex space forms, Archiv der Mathematik, 74, 154-160, 2000.
[26] Chen B.-Y., A Riemannian invariant for submanifolds in space forms and its applications in: Geometry and Topology of Submanifolds, World Scientific Publishing, River Edge, 6, 58-81, 1994.
[27] Hong, S., Tripathi, M. M., On Ricci curvature of submanifolds, International Journal Pure and Applied Mathematical Sciences, 2, 227-245, 2005.
[28] Hong, S., Matsumoto, K., Tripathi, M.M., Certain basic inequalities for submanifolds of locally conformal Kaehler space forms, Sut Journal of Mathematics, 41, 75-94, 2005.
[29] Tripathi, M.M., Certain basic inequalities for submanifolds in $(\kappa, \mu)-$ spaces, In: Recent Advances in Riemannian and Lorentzian Geometries (Baltimore, MD, 2003), Contemporary Mathematics 337, American Mathematical Society, 187-202, 2003.

