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Abstract 

In this paper, some equalities and inequalities involving the Riemannian curvature 

invariants are obtained on 3-semi slant submanifolds of cosymplectic 3-space forms. Obtained 

relations for 3-semi slant submanifolds are examined on 3-slant, invariant, and totally real 

submanifolds.  

Keywords: Curvature; Submanifold; Cosymplectic 3-Space Form. 

      Kosimplektik 3-Uzay Formlarının Altmanifoldları Üzerinde Chen-tipi Eşitsizlikler 

Öz 

Bu çalışmada kosimplektik 3-uzay formlarının 3-semi slant altmanifoldları üzerine 

Riemann eğrilik invaryantları içeren bazı eşitlik ve eşitsizlikler elde edilmiştir. 3-semi slant alt 

manifoldlar için elde edilen bağıntılar, 3-slant, invaryant ve total reel altmanifoldlar üzerinde 

incelenmiştir. 

Anahtar Kelimeler: Eğrilik; Altmanifold; Kosimplektik 3-Uzay Form. 
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1. Introduction 

The concept of contact 3-manifolds was originated by Y. Kuo [1] and C. Udrişte [2], 

independently. With the introduction of this concept, some classifications of contact 3-
manifolds were presented by many authors.  For mathematical and physical applications of 

contact 3-manifolds, we refer to [3-9], etc. 

After the definition of Chen's slant submanifolds (cf. [10]), the problem of studying the 

geometry of slant submanifolds attracted a lot of attention. From this viewpoint, these 

submanifolds of almost contact metric 3-manifolds were investigated by Malek and Balgeshir 

in [11, 12]. 

In the submanifold theory, the problem of finding basic relationships between curvature 

invariants is one of the most basic and interesting problems. In order to compare the curvature 

invariants of a Riemannian manifold and its submanifold, several inequalities were established 

by Chen [13-16], etc. Later, this problem has been studied by many authors in various 

submanifolds [17-24], etc. 

In the first section of this study, some main formulas and notations for a Riemannian 

manifold and its submanifolds are expressed. In the second section, the definitions of contact 3-

manifolds and their submanifolds are given. An example of 3- semi-slant submanifolds is 

presented. In the third section, some relations involving Ricci curvatures of cosymplectic 3-

space forms and their 3- semi-slant, 3- slant, invariant, and totally real submanifolds are 

examined. In the fourth section, some relations involving scalar curvatures and sectional 

curvatures of cosymplectic 3- space forms and their 3- semi-slant, 3- slant, invariant and 

totally real submanifolds are obtained. 

2. Preliminaries 

Let ( , )M g! ! be a m - dimensional Riemannian manifold.  The sectional curvature of  

Span{ , }Y ZP =  is formulated by  

2

( ( , ) , )( ) ,
( , ) ( , ) ( , )
g R Y Z Z YK Y Z

g Y Y g Z Z g Y Z
Ù =

-

!!
!

! ! !
       

where R! is the Riemannian curvature tensor field of ( , ).M g! !  Let { }1 2, , , me e e…  be an ortho- 

normal basis of pT M!  at .p MÎ !  The Ricci curvature for {1,2, , },le l mÎ …  is formulated by                                          
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( ) ( )l l

m

j
j l

Ric e K e e
¹

= Ùå! !                                                                                                    (1) 

and the scalar curvature at a point p MÎ ! is defined by  

1
( ) ( ).j

j m
l

l
p K e et

< £

= Ùå !!

Ñl

                                                                                                (2) 

Let nP  be an n - dimensional subsection of .pT M!  If n m= , .m pMTP = !  Let us choose 

an orthonormal basis { }1 2, , , ne e e…  of nP . Then n - Ricci curvature of te , {1,2, , }t nÎ … , is 

formulated by 

( ) ( )
n

n

t t j
j t

Ric e K e eP
¹

= Ùå! !                                                                                                

(3) 

and n - scalar curvature of nP  is formulated by 

1
( ) ( )

n l j
l j n

p K e etP
< £

= Ùå !!

Ñl
.                                                                                             (4) 

We note that if n m= , then  ( ) ( )
n pt tMTRic e Ric eP = !

! !  and ( ) ( )
pn T Mp pt tP = !! ! . 

Assume that ( , )M g  is a k - dimensional submanifold of ( , )M g! ! . The Gauss and 

Weingarten formulas are formulated by 

( , )X XY Y X YsÑ =Ñ +                                                                                                    (5) 

and 

,X N XY A X N^Ñ = - +Ñ                                                                                                     (6) 

where , pX Y T MÎ ,N  is a unit normal vector, ,X N pY A X T MÑ Î  and 

( , ), X pX Y N T Ms ^ ^Ñ Î .  Here,  s  is the second fundamental form,  NA  is the shape operator  

and ^Ñ  is the normal connection of .M  It is well known that s is associated to NA  by the 

following formula: 
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( ( , ), ) ( , )Ng X Y N g A X Ys =! .                                                                                            (7)      

Denote the Riemannian curvature tensor of M  by R . The Gauss equation is formulated 

by 

( ( , ) , ) ( ( , ) , ) ( ( , ), ( , )) ( ( , ), ( , ))g R X Y Z W g R X Y Z W g X W Y Z g X Z Y Ws s s s= + -!! ! !  (8) 

for any , , , .pX Y Z W T MÎ  

Let { }1 2, , , ke e e…  be an orthonormal basis of pT M . The main curvature vector field !  is 

formulated by 

( )
1

1 , .
k

l
l le

k
es

=

= å!                                                                                                            (9) 

M  is said to be totally geodesic if 0s = , and it is said to be minimal if 0=! . M is totally 

umbilical if and only if ( ) ( ), ,X Y g X Ys = !  is satisfied for all , pX Y T MÎ .  

Let { }1 2, , ,k k me e e+ + …  be an orthonormal basis of pT M^  and se  belongs to 

{ }1 2, , ,k k me e e+ + … . Denote the intrinsic sectional curvature by ( )jlK e eÙ . In view of (8), if we 

put 

( )( , , )s
l slj jg e e es s= !             and             2

, 1
( ( , ), ( ), )

k

l j j
l j

lg e e e es s s
=

=å ! ,             (10) 

then we find 

( )2
1

( ) ( ) ( )
m

j j ll
s s s

l l jj lj
s k

K e e K e e s s s
= +

Ù = Ù + -å! .                                                          (11) 

From (11), it follows that 

( ) 2 222 ,( ) 2 pp T M nt t s= + -!"                                                                                 (12) 

where 

( )
1

.p lj
l j k

T M Kt
£ < £

= å !!  
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Moreover, there exists the following relation: 

2 22 2 2
11 22 1

1 1 2

2

1 2

1 1 ( ) 2 ( )
2 2

          2 ( ( ) ).

m m
r r

kk j
s k s k j

m

ll jj

k
s

lj
s k l j k

s

s s s

ks s s s s

s s s

= + = + =

= + £ < £

= + - - - +

- -

å å å

å å

!"

                             (13)                                                           

For the basic concepts dealing with Riemannian manifolds, we refer to [16]. 

The relative null space at a point p  in M  is given by [14] 

{ }( , ) 0 for all .p p pN X T M X Y Y T Ms= Î = Î                                                         (14) 

We note that pN  is also said to be the kernel of s  at p [25]. 

The Chen invariant Md  for a Riemannian submanifold M is formulated by [26] 

( ) ( ) inf( )( ),M p p K pd t= -                                                                                              (15) 

where inf( )( ) inf{ ( ) : is a plane} .K p K= P P  

3. Submanifolds of Contact 3-Space Forms 

Definition 1. [1] A differentiable manifold M!  admitting an almost contact 3- structure 

{1,2,3}( , , )l ll lx h j Î is said to be an almost contact 3- structure manifold. An almost contact 3-

structure manifold is denoted by {1,2,3}( , , , .)l l l lM x h j Î
!  

For {1,2,3}( , , , )l l l lM x h j Î
! , the following relations hold: 

, 0  ,j j j jl j l n l l n lj x j x x h j h j h h x= - = = - = =                                                              (16) 

and 

,j j j jl l l l nj j h x j j h x j- Ä = - + Ä =! !                                                                       (17) 

where ( , , )l j n  is a cyclic permutation of (1,2,3) . If {1,2,3}( , , , )l l l lM x h j Î
!  includes a Riemannian 

metric g!  given by 
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( , ) ( , ) ( ) ( )ll l lg g Y Z YY Z Zj j h h= -! !                                                                                           (18) 

for any , pY Z T MÎ ! , then {1,2,3}( , , , , )l l l lM g x h j Î!!  is said to be an almost contact metric 3-

structure manifold. From the Eq. (18), we have 

( , ) ( , ).l lg Z g ZY Yj j= -! !                                                                                                  (19) 

{1,2,3}( , , , , )l l l lM g x h j Î!!  is called a cosymplectic 3- manifold if  

0ljÑ =!                                                                                                                                (20) 

is satisfied. It is said to be a Sasakian 3- manifold if  

( ) ( , ) ( )Y l l lZ g Y Z Z Yj x hÑ = -! !                                                                                                 (21) 

is provided. 

In a similar manner to the concept of holomorphic sectional curvature on Hermitian or 

contact metric manifolds, we can state the concept of lj - holomorphic sectional curvature on 

{1,2,3}( , , , , )l l l lM g x h j Î!!  in such a way: 

Definition 2. [11] A plane P  is said to be a lj - section if there exists a unit vector 

pX T MÎ !  orthogonal to lx , where { }, lX Xj  is an orthonormal basis on P  for some 

{ }1,2,3lÎ . The lj - holomorphic sectional curvature of a lj - section is defined by 

( ) ( ( , ) , )l l lK X X g R X X X Xj j jÙ =! !! . 

A cosymplectic 3-manifold {1,2,3}( , , , , )l l l lM g x h j Î!!  becomes a cosymplectic 3- space 

form if it is of constant lj - holomorphic sectional curvature c . A cosymplectic 3- space form 

is shown by ( )M c! . 

If ( )M c! is a cosymplectic 3- space form, then the Riemannian curvature is satisfied the 

following relation [1]: 
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[
3

1

( , , , ) { ( , ) ( , ) ( , ) ( , )
4

                        ( , ) ( , ) ( , ) ( , )

2 ( , ) ( , ) ( , ) ( ) ( )
                
         

  
  

      ( ,
      

)
       

( )

n n n n
n

n

n n

n

n n

cR X Y Z W g X W g Y Z g X Z g Y W

g X W g Y Z g X Z g Y W

g X Y g Z W g X W Y Z
g X Z Y

j j j j

j j h h
h h

=

= -

+ -

- -

+

å

!

]
( ) ( , ) ( ) ( )

                        ( , ) ( ) ( ) ,
n n

n n

W g Y Z X W
g Y W X Z

h h

h h

-

+

                               

(22) 

for any , , ,X Y Z W MÎ ! .  

Assume that ( , )M g  is a k - dimensional submanifold of {1,2,3}( , , , , )l l l lM g x h j Î!! . For any 

vector field X  in pT M , we can write l Xj  as follows: 

l l lX PX F Xj = + ,                                                                                                            (23) 

where l pPX T MÎ  and l pF X T M^Î  for  { }1,2,3lÎ .                      

We can express the following: 

2 2

, 1
( , )

k

l l nj
j n

P g Pe e
=

= å                                                                                                        (24) 

and 

2 2

1
( , )

k

l l n
n

PX g PX e
=

=å .                                                                                                 (25)               

( , )M g  is said to be invariant if 0lF =  and it is said to be totally real if 0lP = for each 

{1,2,3}lÎ . Furthermore, ( , )M g  becomes 3- slant if for each {1,2,3}lÎ , the angle q  

between l Xj and the tangent space pT M  is constant for every p  in M  and every 0X ¹  which 

is not linearly dependent by lx  [12]. 

We remark that a 3- slant submanifold becomes invariant when 0q =  and it becomes 

totally real if 
2
pq = . Furthermore, the following classification could be stated: 
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Definition 3. [12] A submanifold ( , )M g  is said to be a 3- semi-slant submanifold if we 

have three orthogonal distributions 1D , 2D , 3D , where { }3 1 2 3Span , ,x x x=D  and the following 

cases occur: 

i) 1 2 3TM = Å ÅD D D , 

ii) 1 1( )ij ÌD D , { }1,2,3l" Î , 

iii) 2D  is 3- slant with 0q ¹ . 

It is clear that ( , )M g  is 3- slant if 1 0=D  and it becomes an invariant submanifold if 

0q = . 

Example 1. Let us consider 11- dimensional Euclidean space 11E . If we define 

1 {1, ,11} 2 1 3 4 7 8 5 6 11 10

2 {1, ,11} 4 3 1 2 7 8 5 6 11 9

2 {1, ,11} 2 1 3 4 7 8 5 6 10 9

(( ) ) ( , , , , , , , ,0, , )

(( ) ) ( , , , , , , , , ,0, ),

(( ) ) ( , , , , , , , , , ,0)

i

i

i

i

i

x x x x x x x x x x x
x x x x x x x x x x x
x x x x x x x x x x xi

j

j

j

Î …

Î …

Î …

= - - - - -

= - - - -

= - - - - -

 

such that 1 9xx = ¶ , 2 10xx = ¶ , 3 11xx = ¶  and 1h , 2h , 3h  are duals of 1x , 2x , 3x , respectively. 

We find 11
{1,2,3}( , , , )ll l lx h j ÎE  is an almost contact 3- structure manifold. 

Let us define the following submanifold of 11
{1,2,3}( , , , )ll l lx h j ÎE : 

1 2 3 4 5 5 6 6 7 8 9{( , , , , , , , , , , )}M u u u u u cos u sin u cos u sin u u ua a b b= , 

where , [0, )
2
p

a b Î . In this case, we obtain 

1 1 2 2 3 3 4 4

5 5 6 6 7 8

1 9 2 10 3 11

,    ,   ,   ,
  ,   ,

  

, ,

Y x Y x Y x Y x
Y cos x sin x Y cos x sin x

x x x
a a b b

x x x

= ¶ = ¶ = ¶ = ¶
= ¶ + ¶ = ¶ + ¶
= ¶ = ¶ = ¶

 

and 

1 5 6 2 7 8  ,   N sin x cos x N sin x cos xa a b b= - ¶ + ¶ = - ¶ + ¶ , 
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where 1 2 3 4 5 6 1 2 3Span{ , , , , , , , , }pT M Y Y Y Y Y Y x x x= , 1 2Span{ , }pT M N N^ =  and 1 11{ , , }x x¶ … ¶  

is the natural basis of  11E . If we put 1 1 2 3 4Span{ , , , }Y Y Y Y=D , 2 5 6Span{ , }Y Y=D  and 

3 1 2 3Span{ , , }x x x=D , then M becomes 3- semi invariant with q a b= - . 

4. Inequalities Involving Ricci Curvatures 

Let us indicate the set of all unit vectors in pT M  by 1
pT M .  

Theorem 1. [27] Let M be a k - dimensional submanifold of ( , )M g! ! . The following 

cases hold: 

i) For any 1
pX T MÎ , we get 

( ) ( )221
Ric

4 pT M
X k XRic£ +! " .                                                                                                           (26) 

Here ( )
pT M

Ric X!  is the k - Ricci curvature of 1
pX T MÎ . 

ii) The equality case of (26) occurs for 1
pX T MÎ  if and only if 

( , ) 0, for each ,
2 ( , ) ( ).

X Z Z X
X X k p
s

s

= ^

=

ì
í
î !

 

iii) The equality case of (26) occurs for each 1
pX T MÎ  if and only if either p  is a totally 

geodesic point or p  is a totally umbilical point for 2k = .              

From Theorem 1, we can state: 

Corollary 1. [28] For any Riemannian submanifold, any two of the below three cases refer 

to the other one: 

i) X  satisfies the equality case of (26). 

ii) ( ) 0p =! . 

iii) pX NÎ . 
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Now, we assume that { }1 2 3, ,x x x is tangent to M  and 1
pX T MÎ  throughout this paper. 

Lemma 1. For any k - dimensional submanifold of ( )M c! . We find 

3
2 2 2

1
( ) 1 [3 ( , ) ( ) ( )]

4l j n l j n j n l
n

cK e e g P e e e eh h
=

ì ü
Ù = + - -í ý

î þ
å! ,                                                    (27) 

( )
3

2 2

1
( 4) [3 (2 ) ( )]

4pT M n n
n

cRic X n P X k Xh
=

ì ü
= - + + -í ý

î þ
å! ,                                            (28) 

3
2

1
( ) ( 1)( 6) 3

8p nT M
n

cp k k Pt
=

ì ü
= - - +í ý

î þ
å! .                                                                      (29) 

Proof. From (22), we have 

{
3

1

( ( , ) , ) ( , ) ( , ) ( , ) ( , )
4

                             + ( , ) ( , ) ( , ) ( , )

                            2 ( , ) ( , ) ( , ) ( ) (

l l l l l l

l n l n l n n l

l n j n l

j j j j j j

j j

l l n

j j
n

j j n

cg R e e e e g e e g e e g e e g e e

g e e g e e g e e g e e

g e e g e e g e e e

j j j j

j j h h
=

= -

é -ë

- -

å

!!

}

)

                            ( , ) ( ) ( ) ( , ) ( ) ( )

                            ( , ) ( ) ( ) ,

l n n l n

j

j j j j

j j

l n l

l n l n

e
g e e e e g e e e e

g e e e e

h h h h

h h

+ -

ù+ û

 

which is equivalent to (27). In view of (1) and (27), we find 

( )
3

2 2
1 1

1 1 1
1 ( 1) 3 ( , ) (2 ) ( )

4p

k k

T M n j n
n j j

e cRic k g P e e k eh
= = =

ì üé ùï ï= - + + -í ýê ú
ï ïë ûî þ

å å å! . 

Putting 1e X=  and using (25) in the last equation, we obtain (28). From (2) and (28), we get 

3
2

1

2

1
(2 ) ( )( ) ( 4) 3

8p

k

ln n lT M
l n

e kcp k k P et h
= =

+ -
ì üé ù= - +í ýë ûî þ

åå! . 

Considering (24) in the last equation, we obtain (29). 

In view of Theorem 1 and (28), we obtain 

Theorem 2. For any k - dimensional submanifold of ( )M c! , we have the following cases: 
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i) For any 1
pX T MÎ , we get 

3
2 22 2

1

1
( ) ( 4) 3 (2 ) ( )

4 4 n n
n

c
Ric X k k P X k Xh

=

£ + - + + -ì üé ùí ýë ûî þ
å! .                                         (30) 

ii) The equality case of (30) occurs for 1
pX T MÎ  if and only if 

 
( , ) 0, for each ,

( , ) ( ).
2

X Z Z X
kX X p

s

s

= ^ì
ï
í

=ïî
!

 

iii) The equality case of (30) occurs for each 1
pX T MÎ  if and only if p  is a totally 

geodesic point. 

From Theorem 2, we immediately have 

Corollary 3. For k - dimensional submanifold of ( )M c! , any two of the below three cases 

refer to the other one: 

i) X  satisfies the equality case of (30). 

ii) ( ) 0p =! . 

iii) pX NÎ . 

Definition 4. Let D  be a distribution on M . 

i) If ( , ) 0X Zs =  is satisfied for all ,X Z ÎD , then M  is said to be -D geodesic. 

ii) If there exists a smooth function l  on M  satisfying ( , ) ( , )X Z g X Zs l=  for each      

,X Z ÎD , then M  is called -D umbilical. 

Theorem 3. For any k - dimensional 3- semi-slant submanifold, the following cases 

occur: 

i) For every unit 1X ÎD , we get 

( ) 2 21
Ric ( 5)

4 4
c

X k k£ + +! .                                                                                        (31) 
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ii) The equality case of (31) is true for each 1X ÎD  at p MÎ if and only if M  is 1 -D                                     

geodesic. 

iii) For every unit 2Y ÎD , we get 

( ) 2 221Ric {( 4) 9cos }
4 4

cY k k q£ + - +! .                                                                   (32) 

iv) The equality case of (32) is true for all 2X ÎD  at p MÎ  if and only if M  is 2 -D

geodesic. 

Proof. If 1X ÎD , we obtain 

3
2

1 1
1, ( ) 0 and ( ) 3

k

n n n j
n j

P X X eh h
= =

= = =åå . 

Using these facts in (28), we obtain (31). The equality case of (31) occurs for each 1X ÎD  if and 

only if ( , ) 0X Zs =  for all 1, .X ZÎD  This implies that M  is 1 -D geodesic. 

If X  belongs to 1D , we obtain 

3 3
2 2

1 1 1
3cos , ( ) 0 and ( ) 3jn

n j
n

n

k

nP X X eq h h
= = =

= = =å åå . 

Using these facts in (29), we obtain (32). The equality case of (32) occurs for each 2Y ÎD  if and 

only if ( , ) 0Y Zs =  for all 2,Y ZÎD . This implies that M  is 2 -D geodesic. 

In view of Theorem 3, we find 

Theorem 4. For any k - dimensional submanifold of ( )M c! , we find the following cases: 

i) For the Ricci tensor S  of M , we have the following table: 

Table 1: 

 M  Inequality 

(1) 3- slant { }22 21 ( 4) 9cos .
4 4

cS k k gqæ ö£ + - +ç ÷
è ø

!  

(2) invariant 
221 ( 5) .

4 4
cS k k gæ ö£ + +ç ÷

è ø
!  
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(3) totally real 
221 ( 1) .

4 4
cS k k gæ ö£ + -ç ÷

è ø
!  

 

ii) The equality case of (1) (3)-  occurs if and only if M  is a totally geodesic submanifold. 

         5. Inequalities Involving Scalar Curvatures 

Lemma 2.  [29] If  ( )1, , 1ka a k… > are real numbers, then 

2
2

1 1

1 k k

l
l

l
l
a

k
a

= =

æ ö £ç ÷
è ø
å å                                                                                                           (33) 

is satisfied. The equality case of (33) occurs if and only if 1 2 ka a a= = =! . 

Theorem 5. For any k - dimensional submanifold of ( )M c! . Then 

( ) 3
2 2

1

1
( ) ( 1)( 6) 3

2 8 n
n

k k c
p k k Pt

=

-
£ + - - +ì ü

í ý
î þ

å!                                                          (34) 

is satisfied. The equality case of (34) is true for p  in M  if and only if p  is a totally umbilical 

point. 

Proof. Assume that 1ke +  is parallel to ( )p!  and 1, , ke e…  diagonalize 
1ke

A
+

. In this case, 

we can write 

( )1

1 1 1
11 22diag , , ,

k

k k
kk

k
eA s s s
+

+ + += …                                                                                    (35) 

and 

( )
1

, trace 0
s slj

k
s s

ll
l

e eA As s
=

= = =å                                                                                 (36) 

for each , 1, ,l j k= …  and 2, ,s k m= + … . From  (12), (35) and (36), we get 
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( )
3

2 22 1 2 2

1 1 2 , 1

2 ( 1)( 6) 3 ( () ) .
4

m
k

n lj
n l s k

k k
s

l
l j

l

c
p k k P kt s s+

= = = + =

= - - + + - -ì ü
í ý
î þ

å å å å!                  (37) 

Considering Lemma 2, we arrive at  

2 1 2

1
( )k

ll

k

l
k s +

=

£å! .                                                                                                             (38)  

From (37) and (38), the eq. (34) could be obtained. If the equality situation of (34) occurs, from 

Lemma 2, we find 

1 1 1
11 22 and 0

s

k k k
kk eAs s s+ + += = = =! .                                                               

The last equation implies that p  is a totally umbilical point. The other direction of proof is easy 

to follow. 

For any k - dimensional 3- semi-slant submanifold of ( )M c! , we put 1 1dim s=D , 

2 2dim s=D  and 1 2 3k s s= + + . Then, we have the following: 

Theorem 6. For any k - dimensional 3- semi-slant submanifold of ( )M c! , we find 

( ) 2 2
1 2

1
( ) {( 1)( 6) 9( 2 cos )}

2 8
k k c

p k k s st q
-

£ + - - + + +! .                                         (39) 

The equality case of (39) is true for p  in M  if and only if p  is a totally umbilical point. 

Proof.  If M is 3- semi-slant, it can be found 

3
2 2

1 2
1

3 6 3 cos
n

nP s s q
=

= + +å .                                                                                                   (40) 

Considering (40) in Theorem 5, the proof is easy to follow. 

As a result of Theorem  6, we also have the following: 

Corollary 4. For any k - dimensional submanifold  M of ( )M c! , 
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i) we have the following table: 

Table 2:  

 M  Inequality 

(1) 3- slant           ( ) 2 2
1 2

1
( ) {( 1)( 6) 9(( )cos 2)}.

2 8
k k cp k k s st q

-
£ + - - + + +!  

(2) invariant ( ) 21
( ) {( 1)( 3)}.

2 8
k k cp k kt

-
£ + - +!  

(3) totally real ( ) 2 21
( ) { 7 24}.

2 8
k k cp k kt

-
£ + - +!  

 

ii) the equality case of  (1)-(3) for each case is satisfied if and only if p  is a  totally 

umbilical point. 

Proof. If M  is 3- slant, then it can be obtained 

2 2
1

3

2
1

3( )cos 6n
n
P s s q

=

= + +å .                                                                                    (41)  

Putting (41) in (34), we get the first case of Table 2. 

Consider the fact that jl nj x x= , if M  is invariant, then we find  

3
2

1 2
1

3( ) 6 3( 1)n
n
P s s k

=

= + + = -å .                                                                               (42) 

Putting (42) in (34), we get the second case of Table 2. 

Considering the fact that jl nj x x= , if M is totally real, then we find  

2

1

3

6n
n
P

=

=å .                                                                                                                       (43) 

Putting (43) in (34), we get the third case of Table 2. 

The proof of ii) is easy to follow from Theorem 6. 

Theorem 7.  For any k - dimensional submanifold of ( )M c! , we have 
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( )
3

2 22

1

1
( 1)( 6) 3

2 8 n
n

c
p k k k Pt

=

£ + - - +ì ü
í ý
î þ

å! .                                                               (44) 

The equality case of (44) occurs for p  in M  if and only if p  is a totally geodesic point. 

Proof. The proof is easy to follow by (12) and (29). 

As a result of Theorem 7, we find the following: 

Corollary 5. For any k - dimensional 3- semi-slant submanifold of ( )M c! , we have 

( ) 22 2
1 2

1 {( 1)( 6) 9( 2 cos )}
2 8

cp k k k s st q£ + - - + + +! .                                                  (45) 

The equality case of (45) occurs for p  in M  if and only if p  is a totally geodesic point. 

Corollary 6. For any k - dimensional submanifold of ( )M c! , 

i) we have the following table: 

Table 3:  

 M  Inequality 

(1) 3 - slant           ( ) 22 2
1 2

1 {( 1)( 6) 9(( )cos 2)}.
2 8

cp k k k s st q£ + - - + + +!  

(2) invariant ( ) 221 {( 1)( 3)}.
2 8

cp k k kt £ + - +!  

(3) totally real ( ) 22 21 { 7 24}.
2 8

cp k k kt £ + - +!  

ii) The equality case of (1)-(3) occurs if and only if p  is a totally geodesic point. 

We need the following lemma for later uses: 

Lemma 3. Let 1 2,  , , ( )ka a ka >…  be real numbers satisfying 

( )
2

2

1 1
1

k k

l l
l l
a k a a

= =

æ ö æ ö= - +ç ÷ ç ÷
è ø è ø
å å .                                                                                         (46) 

Then 
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1 22a a a³  

is satisfied if and only if we find 

1 2 3 ka a a a+ = = =! . 

Let 1{ , , }ke e…  be an orthonormal basis and 1 2Span{ , }e eP = . We define 

2 2

, 3
( , )

k

j
j t

n n tP g P e e
p^

=

= å∣ .                                                                                             (47) 

Then we have 

Theorem 8. Let M be a k - dimensional ( )3k ³  submanifold of ( )M c! . Then, for each 

point p MÎ  and each lj - plane section 1 2Span{ , }e eP =  such that 1 2le ej = , we have 

( )
( ) { }
2 22 2

1 2

2
( ) ( ) ( 7 4) 3

2 1 8 n

k k cp K e e k k P
k p

t ^

-
- Ù £ + - + +

-
! ∣ .                                     (48) 

The equality case (48) occurs at p  in M  if and only if there exists an orthonormal basis 

{ }1, ,k me e+ …  of pT M
^  such that the shape operators 

se
A  take the following forms: 

( )
1

2

0 0
0 0
0 0

k

k

e

a
A b

a b I
+

-

æ ö
ç ÷= ç ÷
ç ÷+è ø

,                                                                                                 (49) 

{ }
2

2, ,
0
0 ,

0 0 0k

s s

s sse k m
c d

A sd c

-

Î + …

æ ö
ç ÷= -ç ÷
ç ÷
è ø

.                                                            (50) 

Proof. Assume that ( )p!  is in the direction of 1ke +  and 1, , ke e…  diagonalize 
1ke

A
+

. In this 

case, 
se

A  take the forms (35) and (36). Thus, we can write 
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( )
2

1 1 2 1 2 2

1 1 1 2 , 1
1 ( ) ( ) ( )

m
k k k
ll lj lj

l l l j s k l j

k k k k
s

llks s s s w+ + +

= = ¹ = = + =

æ öæ ö = - + + +ç ÷ç ÷
è ø è ø
å å å å å                          (51) 

such that 

{ }
2

2 2( 2)2 ( ) ( 1)( 6) 3
8 1n
c k kp k k P

k
w t -
= - - - + -

-
! .                                                 (52) 

Applying Lemma 3 to (51), we find 

1 1 1 2 2
11 22

1 2 , 1
( ( )2 )

m
k k k

lj lj
l j s k l j

k k
ss s w s s+ + +

¹ = = + =

³ + +å å å .                                                               (53) 

Using (53) in (27), it also follows that  

3
2 2 2

1 2 1 2 1 2
1

2 2 2
1 2 11 22

2 2 2

2

2 , 2

( ) 1 [3 ( , ) ( ) ( )]
4

1 1                    {( ) ( ) } ( )
2 2
1                    ( )
2

n n n

s s s s

n

m m

j j
s k j s k

m

lj
s k l j

s

cK e e g e e e ej h h

w s s s s

s

=

= + > = +

= + >

ì ü
Ù ³ + - -í ý

î þ

+ + + + +

+

å

å å å

å å

                            (54) 

or we have 

3
2 2 2

1 2 1 2 1 2
1

1( ) 1 [3 ( , ) ( ) ( )]
4 2n nn

n

cK e e g e e e ej h h w
=

ì ü
Ù ³ + - - +í ý

î þ
å .                                        (55) 

In view of (52) and (55), we get (48). 

If the equality case of (48) occurs, then we find 

1 1
1 2

11 22

0, 1, , ,
0, , 1, , ,
0

k k
j j

l
s

j
s

s

j n k
l j n k

s s
s

s s

+ += = = + …
=

ì

= + …
+ =

ï
í
ï
î

                                                                              (56) 

for 2, ,s k m= + … . From Lemma 3, it can be found  



Gülbahar	&	Erkan	(2023)		ADYU	J	SCI,	13(1&2),	89-109	
	

 
107 

1 1 1 1
11 22 33
k k k k

kks s s s+ + + ++ = = =! ,                                                                                          (57) 

which shows that 
se

A  becomes as in (49) and (50). 

In view of Theorem 8, we get 

Corollary 7. Let M  be a k - dimensional 3- semi-slant submanifold of ( )M c! . For each 

lj - plane section 1 2Span{ , }e eP = , we have 

( )
( )

2
2 2 2

1 2 1 2

2
( ) ( ) { 7 14 9( cos )}

2 1 8
k k cp K e e k k s s
k

t q
-

- Ù £ + - + + +
-

! .                      (58) 

The equality case of  (58) is satisfied if and only if 
se

A  becomes as in (49) and (50). 

Proof. Under this assumption, we find 

2 2
1 23( cos )nP s s

p
q^ = +∣ .                                                                                                 (59) 

Using (59) in (48), the proof could be obtained. 

Corollary 8. Let M  be a k - dimensional submanifold of ( )M c! and 1 2Span{ , }e eP =  be 

a lj - section. 

i) We get the below table: 

Table 4:  

 M  Inequality 

(1) invariant          
( )
( )

2
2 2

1 2

2
( ) ( ) { 2 15}

2 1 8
k k c

p K e e k k
k

t
-

- Ù £ + + -
-

!  

(2) totally real 
( )
( )

2
2 2

1 2

2
( ) ( ) { 7 32}.

2 1 4
k k c

p K e e k k
k

t
-

- Ù £ + - +
-

!  

ii) The equality case of (1)-(2) is satisfied if and only if 
se

A  becomes as in  (49) and (50). 

Proof. Assume that M  is invariant. In this case, we find 



Gülbahar	&	Erkan	(2023)		ADYU	J	SCI,	13(1&2),	89-109	
	

 
108 

2

1 23( ) 3( 3)nP s s k
p^

= + = -∣ .                                                                                                              (60) 

Using (60) in (48), we obtain the first case of Table 4. 

If M  is totally real, then we have  

2
6nP p^

=∣ .                                                                                                                     (61) 

Using (61) in (48), we obtain the second case of Table 4. 

The proof of ii) is straightforward from Theorem 8. 
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