Kütahya Dumlupınar University Institute of Graduate Studies

Journal of Scientific Reports-A E-ISSN: 2687-6167

Number 52, March 2023

ANTIMICROBIAL ACTIVITY of (E)-3-(4-SULFAMOYLPHENYLCARBAMOYL) ACRYLIC ACID DERIVATIVES

Halil İLKİMEN¹*, Cengiz YENİKAYA², Aysel GÜLBANDILAR³

^{1*}Kütahya Dumlupınar University, Faculty of Art and Sciences, Department of Chemistry, Kutahya, <u>halil.ilkimen@dpu.edu.tr</u>, ORCID: 0000-0003-1747-159X, ²Kütahya Dumlupınar University, Faculty of Art and Sciences, Department of Chemistry, Kutahya, <u>cengiz.yenikaya @dpu.edu.tr</u>, ORCID: 0000-0002-5867-9146 ³Eskişehir Osmangazi University, Faculty of Agricultural Engineering, Department of Food Engineering, Eskişehir, <u>aysel.gulbandilar@gu.edu.tr</u>, ORCID: 0000-0001-9075-9923

Receive Date:06.06.2022

Accepted Date: 28.03.2023

ABSTRACT

In this study, proton transfer salts { $(Hap)^+(samal)^-(4)$ and $(HBI)^+(samal)^-(5)$ } were synthesized from the reaction of (E)-3-(4-sulfamovlphenylcarbamovl)acrylic acid (Hsamal, 1) with 1H-benzimidazole (BI, 3) or 2-aminopyridine (ap, 2), metal complexes of 1 {Fe(II) { $[Fe(samal)(H_2O)_2][Fe(OH)_3(H_2O)]}$ (6) and $[(H_2O)(OH)_2Fe(samal)Fe(H_2O)_2]$ (7)}, Co(II) { $[(H_2O)(OH)_2Co(samal)Co(H_2O)_2]$ (8)}, Ni(II) **(9**)} Cu(II) $\{[Cu(samal)_2(H_2O)_2]\}$ $\{[Ni(samal)_2(H_2O)_2]\}$ and (10)}, of 4 {Ni(II) $\{[(H_2O)(OH)Ni(samal)Ni(OH)_2(ap)(H_2O)_2] (11)\}, Cu(II) \{[Cu(samal)(OH)(ap)_2] (12)\}$ and of 5 $\{Co(II) \{ [(HO)_2Co(samal)Co(BI)_2] (13) \}, Ni(II) \{ [(H_2O)_2(HO)_3Ni(samal)Ni(BI)_2] (14) \}$ and Cu(II) $\{[(H_2O)_2(HO)_3Cu(samal)Cu(BI)_2(OH)]$ (15)} by the methods found in the literature. Antimicrobial activities of 1-15 and metal salts {iron(II) sulfate heptahydrate (16), cobalt(II) acetate tetrahydrate (17), nickel(II) acetate tetrahydrate (18) and copper(II) acetate dihydrate (19)} against *Enterococcus* faecalis (ATCC 29212) (Gram positive), Pseudomonas aeruginosa (ATCC 27853), Bacillus subtilis (wild type), Staphylococcus aureus (NRRL B-767), Listeria monocytogenes (ATCC 7644), Escherichia coli (ATCC 25922) (Gram negative) and Candida albicans (ATCC 14053) (yeast) microorganisms has been tested. The MIC (Minimum Inhibitory Concentration) values of 1-19 were compared with those of reference antimicrobial compounds Vancomycin, Cefepime, Levofloxacin and Fluconazole. Compounds with the best activity are 12 (15.60 μ g/mL) for C. albicans, 1 and 2 (31.25 µg/mL) for B. subtilis, 13 (31.25 µg/mL) for E. faecalis, 13 (15.60 µg/mL) for S. aureus, 4 and 12 (15.60 µg/mL) for E. Coli, 3 and 8-12 (31.25 µg/mL) for L. monocytogens, and 8 (31.25 µg/mL) for P. aeruginoa.

Keywords: 3-(4-sulfamoylphenylcarbamoyl)acrylic acid, 2-Aminopyridine, Salt, Metal Complexes, Antimicrobial activity

1. INTRODUCTION

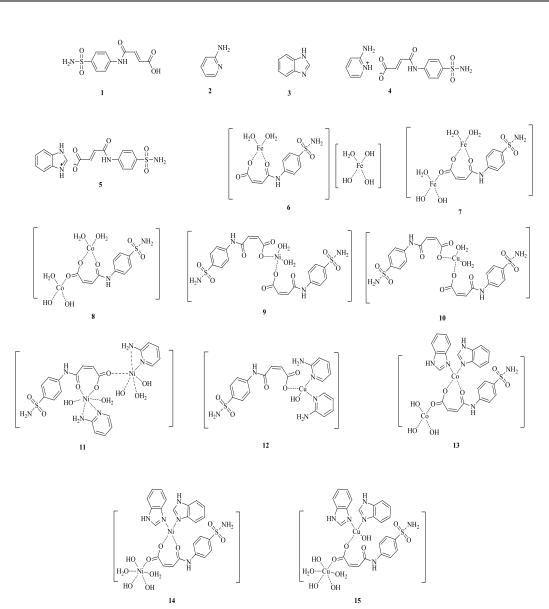
Proton transfer reactions are unique among numerous chemical processes in which a proton is transferred from one binding site to another, either intermolecularly or intramolecularly. These only involve the transport of a nucleus without any auxiliary electrons. Such reactions can occur without serious disorder in the bonding electrons and without introducing repulsive forces between the non-bonding electrons [1]. Proton transfer is one of the most fundamental processes that plays an important role in many biochemical and chemical reactions [2,3]. Recently, research on proton transfer has been mainly focused on catalytic reactions [4], crystal engineering [5,6], energetic materials [7-9], organic ferroelectrics [10,11],hydrogen storage [12-15], nonlinear optical materials [16,17] and pharmaceutical industry [18,19]. Proton transfer is also known as an important step in many biochemical processes [20-24]. Aromatic/aliphatic carboxylic acids and aromatic/aliphatic bases are generally used in the synthesis of proton transfer salts. In these reactions, the proton of the acid is transferred by the base to form compounds with (+) and (-) charges. These compounds are watersoluble compounds [25].

The biological activity of (*E*)-3-(4-sulfamoylphenylcarbamoyl) acrylic acid (1) derivatives are known such as antimicrobial activity [26], dielectric properties [27], anti-inflammatory [28] and antiglaucoma [29,30]. In the literature, proton transfer salts of 1 with 2-aminopyridine [30], 1*H*-benzimidazole [30], 3-aminopyridine, 2-amino-4/5/6-methylpyridines [31] and Ni(II), Co(II), Cu(II) and Fe(II) metal complexes of 1 have been synthesized.

Nowadays, it becomes useless because bacteria that cause diseases gain resistance to the chemicals used in the treatment of diseases. Therefore, there is a need for new chemicals obtained in an effective and inexpensive way to eliminate microorganisms harmful to human health [32-36]. Finding that the compounds obtained in this study have antimicrobial activity against bacteria and yeasts will shed light on future studies. It is obvious that proton transfer salts obtained from 3-(4-sulfamoylphenylcarbamoyl) acrylic acid and its derivatives with antifungal and antibacterial activity and other organic ligands will show similar properties in co-crystal and mixed ligand metal complexes [26-30].

In this study, proton transfer salts 4 and 5 were synthesized from the reaction of 3-(4-sulfamoylphenylcarbamoyl) acrylic acid (1) with 2-aminopyridine (2) or 1*H*-benzimidazole (3), simple metal complexes (6-10) of 1 and metal complexes (11-15) of salts by the methods found in the literature. Antimicrobial activities of 1-15 and metal salts (16-19) against *E. faecalis* (Gram +), *B. subtilis* (wild type), *L. monocytogenes*, *E. coli*, *P. aeruginosa*, *S. aureus* (Gram -) and *C. albicans* (yeast) microorganisms has been tested. The MIC values of the 1-19 were compared with those of control compounds Vancomycin, Cefepime, Levofloxacin and Fluconazole.

2. EXPERIMENTAL


2.1. Materials and Methods

This study, maleic anhydride, sulphanilamide, 2-aminopyridine, 1*H*-benzimidazole, iron(II) sulfate heptahydrate, cobalt(II) acetate tetrahydrate, nickel(II) acetate tetrahydrate and copper(II) acetate dihydrate were obtained from Sigma Aldrich.

2.2. Synthesis of 4-15.

The compounds (4-15) were synthesized and characterized by methods found in the literature [30, 31]. The structures of 1-15 are given in Figure 1.

JSR A Journal of Scientific Reports

İlkimen, et al., Journal of Scientific Reports-A, Number 52, 365-375, March 2023.

Figure 1. Structures of 1-15.

2.3. Antimicrobial Assay

E. coli (ATCC 25922) and E. faecalis (ATCC 29212) has been obtained from Eskişehir Osmangazi University, Faculty of Medicine and S. aureus (NRRL B-767), B. subtilis, P. aeruginosa (ATCC 27853), L. monocytogenes (ATCC 7644) and C. albicans (ATCC 14053) from Eskişehir Technical

University, Biology Department. Microdilution susceptibility test was used to evaluate the antimicrobial activities of 1-19.

2.3.1. Microorganism

Microbroth dilution susceptibility test was used for antimicrobial analysis of the compounds [37]. MHB medium was prepared as single and double force. The **1-19** and reference antimicrobial compounds (4 mg) were dissolved in 2 mL of DMSO solution. The fungal and bacterial species used were incubated overnight on single-strength MHB medium and their fresh cultures were prepared. Suspensions of the cultures were prepared, and cell densities were adjusted to 0.5 Mc Farland tube turbidity $\{1.0x10^8 \text{ CFU/mL}\}$ [38,39].

3. RESULTS AND DISCUSSION

3.1. Antifungal and Antibacterial Activities of Compounds

In this work, antifungal and antibacterial activity of all compounds (1-19) were tested by microdilution method. MIC values of 1-19 are given in Table 1. 1-19 were observed to have antibacterial and antifungal activity properties. The antifungal and antibacterial activity results obtained are in agreement with similar studies in the literature [26,27,40-43].

Against *C. albicans* yeast species, the compounds **12** (15.60 μ g/mL), **7** and **13-15** (31.25 μ g/mL) showed a higher effect than the control compound Fluconazole (62.50 μ g/mL) while other compounds (except **5**, **8**, **16**, and **19**) had similar effects with Fluconazole. The compounds **5**, **8**, **16**, and **19** (125.00 μ g/mL) showed less activity than Fluconazole.

Against *E. faecalis* bacteria, compound **13** was more effective than Vancomycin and Levoflaxacin while the other compounds (except **3**, **8**, and **10**) had similar effects with Vancomycin and Levofloxacin (62.50 μ g/mL). The compounds **3**, **8**, and **10** (125.00 μ g/mL) showed less activity than Vancomycin and Levofloxacin. The compound **13** (31.25 μ g/mL) had similar effects with Cefepime while other compounds showed less activity (62.50-125.00 μ g/mL) than Cefepime.

Against B. subtilis bacteria, all compounds were found to have higher activity than the Vancomycin. It was determined that compounds 1 and 2 (31.25 μ g/mL) had the highest activity against bacteria. The compounds 1 and 2 were more effective than Levofloxacin and Cefepime while the other compounds (except 10) had similar effects with Levofloxacin and Cefepime. The compound 10 (125.00 μ g/mL) showed less activity than Levofloxacin and Cefepime.

Against *S. aureus* bacteria, the compounds **1**, **2**, **4-9**, **12**, and **15-18** were determined to have similar effects (62.50 μ g/mL) with Cefepime while the compounds **3**, **10**, and **11** showed less activity (125.00 μ g/mL) than Cefepime. The others compound **13** (15.60 μ g/mL), **14**, and **19** (32.25 μ g/mL) were more effective than Cefepime. The **14** and **19** (31.25 μ g/mL) were determined to have similar effects with Levofloxacin and Vancomycin while other compounds showed less activity (62.50-125.00 μ g/mL) than Vancomycin and Levofloxacin.

Against *E. coli* bacteria, compounds 4 and 12 (15.60 μ g/mL) had higher activity than all control compounds. Compounds 1, 2, 5, 11, 15, and 16 (31.25 μ g/mL) for Vancomycin and Levofloxacin and 3, 6, 9, 10, 13, 14, and 17-19 (62.50 μ g/mL) for Cefepime have similar effects with control compounds.

Against *L. monocytogens*, all compounds had higher activity than Vancomycin. The **3** and **8-12** were determined to have similar effects (31.25 μ g/mL) with Levofloxacin and Cefepime while the other compounds showed less activity than Levofloxacin and Cefepime.

Against *P. aeruginoa* bacteria, the compound **8** showed a higher effect (15.60 μ g/mL) than the control compounds. The compounds **1-5**, **7**, **10**, and **13-19** were determined to have similar effects (62.50 μ g/mL) with Vancomycin while the compound **11** showed similar activity (31.25 μ g/mL) than Levofloxacin and Cefepime. The compounds **6** and **9** showed less activity (125.00 μ g/mL) than all the control compounds.

Compound	C. albicans	B. subtilis	E. faecalis	S. aureus	E. coli	L. monocytogens	P. aeruginoa
Cefepime	Not tested	62.50	31.25	62.50	62.50	31.25	31.25
Vancomycin	Not tested	250	62.50	31.25	31.25	125.00	62.50
Levofloxacin	Not tested	62.50	62.50	31.25	31.25	31.25	31.25
Fluconazole	62.50	Not tested	Not tested	Not tested	Not tested	Not tested	Not tested
1	62.50	31.25	62.50	62.50	31.25	62.50	62.50
2	62.50	31.25	62.50	62.50	31.25	62.50	62.50
3	62.50	62.50	125.00	125.00	62.50	31.25	62.50
4	62.50	62.50	62.50	62.50	15.60	62.50	62.50
5	125.00	62.50	62.50	62.50	31.25	62.50	62.50
6	62.50	62.50	62.50	62.50	62.50	62.50	125.00
7	31.25	62.50	62.50	62.50	125.00	62.50	62.50
8	125.00	62.50	125.00	62.50	125.00	31.25	15.60
9	62.50	62.50	62.50	62.50	62.50	31.25	125.00
10	62.50	125.00	125.00	125.00	62.50	31.25	62.50
11	62.50	62.50	62.50	125.00	31.25	31.25	31.25
12	15.60	62.50	62.50	62.50	15.60	31.25	62.50
13	31.25	62.50	31.25	15.60	62.50	62.50	62.50
14	31.25	62.50	62.50	31.25	62.50	62.50	62.50
15	31.25	62.50	62.50	62.50	31.25	62.50	62.50
16	125.00	62.50	62.50	62.50	31.25	62.50	62.50
17	62.50	62.50	62.50	62.50	62.50	62.50	62.50
18	62.50	62.50	62.50	62.50	62.50	62.50	62.50

Table 1. Antibacterial and antifungal activity values (µg/mL) of compounds

İlkimen et al	Iournal of Scientific Reports-A	Number 52, 365-375, March 2023.
<i>iininch</i> , <i>ci ui</i> .,	Journal of Sciencific Reports-1,	, <i>Number 52</i> , 505-575, <i>Murch</i> 2025.

	19	125.00	62.50	62.50	31.25	62.50	62.50	62.50
--	----	--------	-------	-------	-------	-------	-------	-------

4. CONCLUSIONS

All compounds (1-19) showed antimicrobial activity against *S. aureus*, *E. faecalis*, *B. subtilis*, *E. coli*, *C. albicans*, *L. monocytogenes* and *P. aeroginosa* microorganisms. 1-19 with the best activity are 12 (15.60 µg/mL) for *C. albicans*, 1 and 2 (31.25 µg/mL) for *B. subtilis*, 13 (31.25 µg/mL) for *E. faecalis*, 13 (15.60 µg/mL) for *S. aureus*, 4 and 12 (15.60 µg/mL) for *E. Coli*, 3 and 8-12 (31.25 µg/mL) for *L. monocytogens* and 8 (15.60 µg/mL) for *P. aeruginoa*. In general, metal complexes showed better activity results than proton transfer salts and starting materials.

ACKNOWLEDGEMENT

This work was supported by Kütahya Dumlupinar University Research Foundation (Grant No: 2013/36 and 2019/12) and was carried out at the Chemistry Department of same University.

REFERENCES

- [1] Gupta, S. K. S., (2016). Proton transfer reactions in apolar aprotic solvents. Journal of Physical Organic Chemistry, 29, 251–264.
- [2] Armentano, D., De Munno, G., Mastropietro, T. F., Julve, M., and Lloret, F. (2005). Intermolecular proton transfer in solid phase, a rare example of crystal-to-crystal transformation from hydroxo-to oxo-bridged iron (III) molecule-based magnet. Journal of the American Chemical Society, 127, 10778–10779.
- [3] Root, M. J., and MacKinnon, R. (1994). Two identical noninteracting sites in an ion channel revealed by proton transfer. Science, 265, 1852–1856.
- [4] Gerlits, O., Wymore, T., Das, A., Shen, C. H., Parks, J. M., Smith, J. C., Weiss, K. L., Keen, D. A., Blakeley, M. P., Louis, J. M., Langan, P., Weber, I. T., and Kovalevsky, A. (2016). Long-range electrostatics-induced two-proton transfer captured by neutron crystallography in an enzyme catalytic site. Angewandte Chemie International Edition, 55, 4924–4927.
- [5] Moghimi, A. Alizadeh, R., Shokrollahi, A., Aghabozorg, H., Shamsipur, M., and Shockravi, A. (2003). First anionic 1,10-phenanthroline-2,9-dicarboxylate containing metal complex obtained from a novel 1,1 proton-transfer compound, Synthesis, characterization, crystal structure, and solution studies. Inorganic Chemistry, 42, 1616–1624.
- [6] Nichols, D. A., Hargis, J. C., Sanishvili, R., Jaishankar, P., Defrees, K., Smith, E. W., Wang, K. K., Prati, F., Renslo, A. R., Woodcock, H. L., and Chen, Y. (2015). Ligand-induced proton transfer and low-barrier hydrogen bond revealed by x-ray crystallography. Journal of the American Chemical Society, 137, 8086–8095.

- [7] Shimizu, G. K, Taylor, J. M., and Kim, S. (2013). Proton conduction with metal-organic frameworks. Science, 341, 354–355.
- [8] Yoon, M., Suh, K., Natarajan, S., and Kim, K. (2013). Proton conduction in metal–organic frameworks and related modularly built porous solids. Angewandte Chemie International Edition, 52, 2688–2700.
- [9] Bolton, O., and Matzger, A. J. (2011). Improved stability and smart-material functionality realized in an energetic cocrystal. Angewandte Chemie International Edition, 50, 896–8963.
- [10] Horiuchi, S., and Tokura, Y. (2008). Organic ferroelectrics. Nature Materials, 7, 357–366.
- [11] Horiuchi, S., Kumai, R., and Tokura, Y. (2007). A supramolecular ferroelectric realized by collective proton transfer. Angewandte Chemie International Edition, 46, 3497–3501.
- [12] Lototskyy, M. V., Tolj, I., Davids, M. W., Klochko, Y. V., Parsons, A., Swanepoel, D., Ehlers, R., Louw, G., Westhuizen, B., Smith, F., Pollet, B. G., Sita, C., and Linkov, V. (2016). Metal hydride hydrogen storage and supply systems for electric forklift with low-temperature proton exchange membrane fuel cell power module. International Journal of Hydrogen Energy, 41, 13831–13842.
- [13] Adamson A., Guillemin J.C., and Burk P. (2015). Proton transfer reactions of hydrazine-boranes. Journal of Physical Organic Chemistry, 28, 244–249.
- [14] Spry, D. B., and Fayer, M. D. (2009). Proton transfer and proton concentrations in protonated Nation fuel cell membranes. The Journal of Physical Chemistry B, 113, 10210–10221.
- [15] Cochlin, D. (2014). Graphene's promise for proton transfer in fuel cell membranes. Fuel Cells Bulletin, 2014, 12-12.
- [16] Asselberghs, I., Zhao, Y., Clays, K., Persoons, A., Comito, A., and Rubin, Y. (2002). Reversible switching of molecular second-order nonlinear optical polarizability through proton-transfer. Chemical Physics Letters, 364, 279–283.
- [17] Jayanalina, T., Rajarajan, G., Boopathi, K., and Sreevani, K. (2015). Synthesis, growth, structural, optical and thermal properties of a new organic nonlinear optical crystal, 2-amino-5-chloropyridinium-*L*-tartarate. Journal of Crystal Growth, 426, 9–14.
- [18] Bica, K., Shamshina, J., Hough, W. L., MacFarlane, D. R., and Rogers, R. D. (2011). Liquid forms of pharmaceutical co-crystals, exploring the boundaries of salt formation. Chemical Communications, 47, 2267–2269.
- [19] Steed, J. W. (2013). The role of co-crystals in pharmaceutical design. Trends in Pharmacological Sciences, 34, 185–193.

- [20] Chen, K. (2000). Atomically defined mechanism for proton transfer to a buried redox centre in a protein. Nature, 405, 814–817.
- [21] Chen, K. Y., Lai, C. H., Hsu, C. C., Ho, M. L., Lee, G. H., and Chou, P. T. (2007). Ortho green fluorescence protein synthetic chromophore; excited-state intramolecular proton transfer via a seven-membered-ring hydrogen-bonding system. Journal of the American Chemical Society, 129, 4534–4535.
- [22] Luecke, H., Richter, H. T., and Lanyi, J. K. (1998). Proton transfer pathways in bacteriorhodopsin at 2.3 angstrom resolution. Science, 280, 1934–1937.
- [23] Heberle, J, Riesle, J., Thiedemann, G., Oesterhelt, D., and Dencher, N. A. (1994). Proton migration along the membrane surface and retarded surface to bulk transfer. Nature, 370, 379– 382.
- [24] Dellago, C., and Hummer, G. (2006). Kinetics and mechanism of proton transport across membrane nanopores. Physical Review Letters, 97,245901.
- [25] Aghabozorg, H., Sadrkhanlou, E., Shokrollahi, A., Ghaedi, M., and Shamsipur, M. (2009). Synthesis, characterization, crystal structures, and solution studies of Ni(II), Cu(II) and Zn(II) complexes obtained from pyridine-2,6-dicarboxylic acid and 2,9-dimethyl-1,10-phenanthroline, Journal of the Iranian Chemical Society. 6(1), 55-70.
- [26] Bapna, S., Hiran, B. L., and Jain, S. (2015). Antimicrobial evaluation of maleimide monomers, homopolymers and copolymers containing azo, sulfonamide and thiazole groups. Journal of Advances In Chemistry, 11(1), 3404-3415.
- [27] Erol, I. (2022). Synthesis and characterization of novel sulfonamide functionalized maleimide polymers, Conventional kinetic analysis, antimicrobial activity and dielectric properties. Journal of Molecular Structure, 1255,132362.
- [28] Jan, M. S., Ahmad, S., Hussain, F., Ahmad, A., Mahmood, F., Rashid, U., Abid, O. R., Ullah, F., Ayaz, M., and Sadiq, A. (2020). Design, synthesis, in-vitro, in-vivo and in-silico studies of pyrrolidine-2,5-dione derivatives as multitarget anti-inflammatory agents. European Journal of Medicinal Chemistry, 186, 111863.
- [29] Oktay, K., Kose, L. P., Sendil, K., Gultekin M. S., Gulcin, I., and Supuran, C. T. (2016). The synthesis of (Z)-4-oxo-4-(arylamino)but-2-enoic acids derivatives and determination of their inhibition properties against human carbonic anhydrase I and II isoenzymes. Journal of Enzyme Inhibition and Medicinal Chemistry, 31(6). 939-945.
- [30] Yenikaya, C., Ilkimen, H., Demirel, M. M., Ceyhan, B., Bulbul, M., and Tunca, E. (2016). Preparation of two maleic acid sulfonamide salts and their copper(II) complexes and antiglaucoma activity studies, Journal of the Brazilian Chemical Society, 27(10). 1706-1714.

- [31] İlkimen, H., and Yenikaya, C. (2022). Synthesis and characterization of proton salts of aminopyridine derivatives and (*E*)-3-(4-sulfamoylphenylcarbamoyl)acrylic acid. Sinop University Journal of Science, 7(1), 57-70.
- [32] Parekh, J., and Chanda, S. (2007). Antibacterial and phytochemical studies on twelve species of Indian medicinal plants, African Journal of Biomedical Research, 10, 175-181.
- [33] Palaniappan, K., and Holley, R. A. (2010). Use of natural antimicrobials to increase antibiotic susceptibility of drug resistant bacteria. International Journal of Food Microbiology, 140, 164-168.
- [34] Kumar, A. S., Venkateshwaran, K., Vanitha, J., Saravanan, V. S., Ganesh, M., Vasudevan, M., and Sivakumar, T. (2008). Synergistic activity of methanolic extract of Thespesia populnea (Malvaceae) flowers with oxytetracycline. Bangladesh Journal of Pharmacology, 4, 13-16.
- [35] Uymaz, B. (2010). Probiotics and Their Use. Pamukkale University Journal of Engineering Sciences, 16(1), 95-104.
- [36] Topal, M., Şenel, G. U., Topal, E. I. A., Öbek, E. (2015). Antibiotics and usage areas. Journal of Ercives University Institute of Science and Technology, 3(3), 121-127.
- [37] Khan, R., Dogan, Ö., and Güven, K. (2020). N-Substituted aziridine-2-phosphonic acids and their antibacterial activities. Organic Communications, 13(2), 51-56.
- [38] Kaplancıklı, Z. A., Turan-Zitouni, G., Özdemir, A., and Güven K. (2004). Synthesis and study of antibacterial and antifungal activities f novel 2-[[(benzoxazole/benzimidazole2yl)sulfanyl] acetylamino]thiazoles. Archives of Pharmacal Research, 27(11), 1081-1085.
- [39] Kaplancıklı, Z. A., Turan-Zitouni, G., Özdemir, A., Revial, G., and Güven K. (2007). Synthesis and antimicrobial activity of some thiazolyl-pyrazoline derivatives. Phosphorus, Sulfur, and Silicon and the Related Elements, 182(4), 749-764.
- [40] İlkimen, H., Yenikaya, C., Gülbandılar, A., and Sarı M. (2016). Synthesis and characterization of a novel proton salt of 2-amino-6-nitrobenzothiazole with 2,6-pyridinedicarboxylic acid and its metal complexes and their antimicrobial and antifungal activity studies. Journal of Molecular Structure, 1120, 25-33.
- [41] İlkimen, H., Türken, N., and Gülbandılar, A. (2021). Synthesis, characterization, antimicrobial and antifungal activity of studies of two novel aminopyridine-sulfamoylbenzoic acid salts and their Cu(II) complexes. Journal of the Iranian Chemical Society, 18, 1941–1946.
- [42] İlkimen, H., Salün, S. G., Gülbandılar, A., and Sarı, M. (2022). The new salt of 2-amino-3methylpyridine with dipicolinic acid and its metal complexes: Synthesis, characterization and antimicrobial activity studies. Journal of Molecular Structure, 1270, 133961.

[43] Büyükkıdan, N., İlkimen, H., Bozyel, S., Sarı, M., and Gülbandılar, A. (2023). The syntheses, structural and biological studies of Co(II) complexes of 1,2-bis(pyridin-4-yl)ethane with 2aminobenzene-1,4-disulfonic acid and 2,6-pyridinedicarboxylic acid. Journal of Molecular Structure, 1275, 134586.