Research Article

Dimethyl Sulfoxide Species Entrapped by Raw and Acid-Activated Sepiolite Framework

Ahmet Tabak ^{a*}, Beytullah Afsin ^b, Bulent Caglar ^c, Sema Caglar ^c

^a Department of Chemistry, Faculty of Arts and Sciences, Sinop University, 57000 Sinop, Turkey

^b Department of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayis University, 55139 Samsun, Turkey

^c Department of Chemistry, Faculty of Arts and Sciences, Erzincan University, 24100 Erzincan, Turk

Abstract

Novel hybrid organic-clay materials were prepared by interaction of limethyl sulfoxide molecules in the interlayer space of raw and acid activated sep olite col ites. The structural and thermal properties of the hybrid materials, raw and acid ac ivated sepiolite were examined by using Fourier transform infrared, thermal analysis, X or diffraction and surface area measurement techniques. Thermal analysis data po e the r markable effects of acid activation on the framework of sepiolite which are reflec d by the intercalation mechanism proceeding through the replacement partly of the interstitial water by dimethyl sulfoxide species. The protons are directly involved in the actual structure and thus enhances the thermal stability of the complex between dimensional subjected and the sepiolite. The noticeable surface area increase of activated sepiolite that that of the raw one is connected to the micropore formation. The data presented his study may also provide further insight into catalysis studies and the application δ clays in the growing field of environmental management.

Keywords: dimethyl sulfoxide, sepiolite, kterst tial water, thermal stability.

Ham- Asitle Aktive Edilmiş Sepiyolit Örgüsü Tarafından Alıkonulan Dimetil Sülfoksit Türleri

Öz

sit noleküllerinin saf ve asit aktive sepivolit killerinin ictabaka Dimetil sü yle vini melez organik kil materyalleri hazırlandı. Saf sepiyolitin, asit boşluğunda etl itin ve elde edilen hibrit malzemelerin yapısal ve termik özellikleri, aktive edilm sepiyo Fourier dönüşün ü kızılötesi, termik analiz, X-ışını toz kırınımı ve yüzey alanı ölçüm kullanılan k incelendi. Termik analiz verileri asit aktivasyonun sepiyolitin yapısına teknikle anüs ü etkileri ve dimetilsülfoksit türlerinin sepiyolitteki iç tabaka suyunun bir ola eğiştirme mekanizmasıyla araya-sızdığını kanıtlamaktadır. Protonlar doğrudan e ver yapı ile ilişkilidir ve dimetil sülfoksit-sepiyolit kompleksinin termik kararlılığını mev artırır. Saf sepiolite nispeten aktive edilmiş sepiyolitin yüzey alanındaki fark edilebilir artış mikrogözenek oluşumuyla ilişkilidir. Bu çalışmada sunulan veriler daha sonraki kataliz çalışmalarına ışık tutabilir ve gelişen çevre yönetimi alanında killerin kullanılmasına katlıda bulunabilir.

Anahtar kelimeler: dimetil sülfoksit, sepiyolit, doku suyu, termik kararlılık

Received: 26.05.2016 Accepted: 27.07.2016

⁶ Corresponding author e-mail: <u>ahmtabak@hotmail.com</u>

Introduction

Clays are widely used as adsorbents, rheological control agents, ion exchangers of metal ions from aqueous medium in many fields of industry because they possess significant physical-chemical properties such as high surface areas, strong adsorption abilities, porosities, high cation exchange capacity, hydration and excellent swelling properties [1-6]. The structural properties of clays determine and limit their potential applications. Various such as acid activation. processes organoclay synthesis, intercalation, calcination and pillaring have been employed to modifying these structural properties of clays [7-11]. The potential of acting as a replacement intermediate of organoclay derivatives has been of interest researchers [12-15].The by many organoclay synthesis, utilized mostly for modifying the structural and surface properties of clay minerals, is an important process to obtain novel materials with-Although properties [12-15]. desired studies extensive on surf2ct intercalation into bentonite clays have been conducted, there seemed to be no reon dimethyl sulfoxide (DMSO) modified sepiolite. The chemistry DMSOcomposites retained by madified sepiolites should represent a clear possiblity of new and promising materials.

ent the structural udy. In features of DMO-septolite and DMSOacid-activated sept lite composites were by using Fourier transform investigate inf area TIR), thermogravimetrythermogravimetry (TG-DTG) deriv and differential thermal (DTA) analyses, X-ray powder diffraction (XRD) and surface area measurement techniques.

Experimental

A purified sepiolite originally from Eskisehir, Turkey and 1 N H₂SO₄ (1:1 mass ratio) were mechanically stirred under reflux for 4 h at 90 °C and the resulting solids were washed with twice distilled water repeatedly. The supernatant

was centrifuged at 2000 rpm and the dried product was sieved to 212 µm finally. Approximately 2 g of the sepiolite sample was thoroughly refluxed with spectral grade DMSO for 3 days at 25 °C under N2 atmosphere. Infrared spectra in the range of 4000-200 cm⁻¹ were recorded at a resolution of 4 cm⁻¹ on a Mattson-1000 FTIR instrument. Simultaneous TG, DTG and DTA analyses were carried out on a therma Rigaku TG 8110 analyzer combined with TAS 100 (range 25-1000 °C) under nitrogen flow (c0 ml min), with a heating rate of 10 °C mm⁻ **KRD** patterns were traced on a Rinaku 2200 automated powder diffracton etc. using Ni-filtered 54050 Å). Surface CuKa radiati $(\lambda,$ asured areas by nitrogen were **K** using Quantachrome adsorption t 77 Monosorb Allen Ler.

Results and Discussion

hown in Fig. 1(a-b) are the comparative FIR spectra of nonintercalated and tercalated sepiolite samples; the band of the triple bridge group Mg₃OH at 3697 cm⁻ ¹, the feature of the structural water at 3474 cm⁻¹, the stretches associated with innersurface hydroxyls and interstitial water at 3619 and 3451 cm⁻¹, respectively and the OH-bending mode at 1660 cm⁻¹. The Si-O combination modes at 1213, 1090 and 987 cm⁻¹, the Si-O-Si basal plane vibrations at 1019 and 474 cm⁻¹, the peak at 442 cm⁻¹ arising from the Si-O-Mg linkage and the Mg₃OH bending mode at 655 cm⁻¹ are attributable to the lattice vibrations [16]. Dolomite impurities give rise to the 1440 cm⁻¹ band. The IR patterns of Sep/DMSO derivative showed striking variations within the characteristic O-H axial deformation region. A careful examination of the spectra suggests that the 3474 and 3440 cm⁻¹ bands are interrelated in that the recessed location of the inner hydroxyl groups account for the considerable intensity decrease of the 3619 cm⁻¹ band in parallel with the extent of intercalation. The downward shift and the intensity decreases of the OH and bending stretches of interstitial water together with the symmetric C-H feature at 2915 cm⁻¹ [Fig. 1(b)] could indicate the DMSO species embedded in the gallery space of sepiolite by substituting partly the interstitial water [17-18]. The 1660 cm^{-1} bending mode of water weakened and furthermore, the skeletal stretches between 1200 and 400 cm⁻¹ disappeared due to permanent breakdown of the octahedral layer under the disruptive effect of acid [Fig. 1(c)]. The tetrahedral units of acid-treated sepiolite in particular, was markedly disturbed after treatment with DMSO which resulted in the frequency shifts of the Si-O stretches at 1213 and 1166 cm⁻¹ and a very prominent band associated with the cointercalated DMSO and water units within the sepiolite matrix emerged at 3434 cm⁻¹ [Fig. 1(c-d)] [18-19]. The lowfrequency modes of the intercalated species which are suppressed by the intense bands related to the framework of sepiolite and the reduced intensity of the 940 cm⁻¹ band in the spectrum of the Sep/DMSO composite complement the ` appearance of the stretches at 1150 and 1101 and support the hypothesis the different hydroxyls, the nner-surf. hydroxyl groups contributed most to the hydrogen bonding directly with he DMSO intercalates [20]. Although measurable amount of DMSO has been intercalated, the IR spectrum of activated sepiolite derivative not significantly different onintercalated sepiolite from that . of except some very weak bands (1511 and and a slightly weakened 1462_cm bendin, mod at 940 cm⁻¹ [Fig. 1(d)]. ore, it seemed that the dolomite There impurities that are distributed on the interior surfaces may have made interlayer diffusion more difficult and contributed to a weaker inorganic host-guest interaction.

Fig. 1. FTIR spectra of (a) raw sepiolite, (b) Sep/DMSO composite, (c) activated Sep and (d) activated September 200 composite.

wo endothermic peaks at 25-105 and **20-222** °C with the mass losses by .92 and 0.60 %, respectively, on the DTG rves of the raw sepiolite correspond to desorption humidity of and chemisorbed" water [Fig. 2(a)]. A small loss of mass (ca. 1.79 %) observed at 232-326 °C represents the removal of bound water. The bigger mass losses (3.25 and 3.25 %) of the raw Sep/DMSO composite than that of the raw sample (1.92 and 0.60)%) in the temperature ranges 25-105 and 158-240 °C implicate the fact that the DMSO molecules are immobilized through ion-dipole interactions with the mobile cations. In these interactions, the organic groups are grafted by covalent bonds to the silicate sheets, which permits obtaining more thermally and chemically stable entities [20, 21]. Furthermore, chemical displacement of bound water by DMSO generated a gradual mass loss up to 4.82 % at a higher temperature interval (290-453 °C). After that, a wide range of overlapped and dehydroxylation decomposition processes occurred in the temperature ranges 580-720 and 725-823 °C whereas the phase transition at 850 °C [18] was the last exothermic event of the DTA profile [Fig. 2(b)]. The penetration ratio of DMSO into the channels of raw sepiolite calculated from present thermoanalytical data is about 20 % [1]. The activated-Sep/DMSO illustrates two distinct endothermic peaks (mass losses by 1.55 % and 10.78 %, in the temperature ranges 71-113 and 118-345 °C, respectively) which may be collectively ascribed as partial oxidation and then elimination of the interlamellar organic matter from the sepiolite host [Fig. 2(c-d)]. The protons are not only required to provide access to interstitial water but also are directly involved in the actual chemistry and thus enhances the stability of the complex between DMSO and the sepiolite notably.

Fig. 2. DTA/TG/DTG measurements of (a) raw pepiolite, (b) Sep/DMSO composite, (c) activated Sep and (d) activated Sep/DMSO composite.

True **DMSO** ation of pionte composites has been confirmed l ng XID reflections [Fig. 04° and $7.12^{\circ}(2\theta)$ at d(110) 3(a)] and 12.42 Å, respectively, values flection at 19.67° 2 θ (130) reak a an teral very weak reflections [22]. The and s strong peaks at 30.88° and 41.04° 20 in the XRD spectrum of raw sepiolite are due to the dolomite impurity. In relation to raw sepiolite, the intensity of the sepiolite basal lattice parameter of 7.04° (20) decreases because of the DMSO molecules intermolecularly bonded with interstitial water and a new d(110) peak of value 13.38 Å at $6.60^{\circ}(2\theta)$ arises from the

inclusion of DMSO into the channels [Fig. 3(b)]. The interlamellar expansion of 0.8321 Å that is much less than the dimensions of the DMSO molecule may be interpreted in terms of a keving incorporation of some of the DMSO species within the region. However, the structural geometry may also allow the DMSO to conform itself to give the least consistent with expansion minimum interaction between neighbouring molecules since the other peaks in raw-Sep/DMSO almost unchanged with respect to raw sepiolite [19, 20].

Fig. 3. X-ray diffractograms of (a) raw sepiolite and (b) Sep/DMSO composite

The surface area increase from 165 to 265 m^2g^{-1} on acid treatment may be connected to the increased number micropores as a result of the structural irregularities of the host framework not surprising that the conversion the original micropores (<mesopores (2-20 nm) by the retained DMSO species primarily favor the surface area decrease of both the vated and raw $r^{2}g^{-1}$ sepiolites from 26⁴ and 165 respectively from rkable effects of [23,24]. acid Rø activation on particle size and channel e lengths are reflected by a higher micropo. activated sepiolite than the ¹OSS mase data prove that the dhe. he ation process proceeds through the interca chemisorption and then decomposition of the adjacent silicate layers' DMSO species which lead to irreversible changes in the sepiolite structure eventually.

Conclusions

The weakening of the stretching and deformation peaks of hydroxyls of sepiolite at 3774, 3619 and 1660 cm^{-1} reveal the presence of host–guest

interactions between the sepiolite and DMSO species. Characteristic vibrational features of hybrid materials were supported by the thermal analysis data and the X-ray diffraction pattern. Thermal analysis data showed that the intercalated DMSO species were thermally more stable than raw DMSO molecules. The incorporation of some of the DMSO species into region of sepiolite caused a change of basal spacing values. The surface area of pure sepiolite is affected by the incorporation of flery DMSO molecules within the spacing. The results o in t is study provide intight may further into electrochemical a alysis studies. Also DMSO-sepioli e materials may be utilized for developing new clay-based hybrid hibiting comparatively higher material thermál

Acknowledgment

The authors are grateful to the Risearch Foundation of Ondokuz Mayis University for the financial support under the project no. F198.

References

[1] Zhou Q, Frost R L, He H, Xi Y, 2007. Changes in the surfaces of adsorbed para-nitrophenol on HDTMA organoclay-The XRD and TG study, J. Colloid Interface Sci., 307 (1): 50-55.

[2] Hrachová J, Madejová J, Billik P, Komadel P, Fajnor VŠ, 2007. Dry grinding of Ca- and octadecyltrimethylammonium montmorillonite, J. Colloid Interface Sci., 316: 589-595.

[3] Liu B, Wang X, Yang B, Sun R, 2011. Rapid modification of montmorillonite with novel cationic gemini surfactants and its adsorption for methylorange, Mater. Chem. Phys., 130: 1220-1226.

[4] Karagüzel C, Çetinel T, Boylu F, Çinku K, Çelik M S, 2010. Activation of (Na, Ca)-Bentonites with Soda and MgO and their utilization as Drilling Mud, Appl. Clay Sci., 48: 398-404.

[5] Karakaya M Ç, Karakaya N, Bakır S, 2011. Some Properties and Potential Applications of the Na- And Ca-Bentonites of Ordu (N.E. Turkey), Appl. Clay Sci., 54: 159-165.

[6] Hu Z, He G, Liu Y, Dong C, Wu X, Zhao W, 2013. Effects of surfactant concentration on alkyl chain arrangements in dry and swollen organic montmorillonite, Appl. Clay Sci., 75-76: 134-140.

[8] Noyan H, Önal M, Sarıkaya Y, 2007. The effect of sulphuric acid activation on the crystallinity, surface area, porosity, surface acidity, and bleaching power of a bentonite, Food Chem., 105: 156-163.

[9] Lagaly G, 1986. Interaction of alkylamines with different types of layered compounds, Solid State Ionics, 22(1) 43-51.

[10] Yariv S, Lapides I, Nasser A, Lahav N, Brodsky I, Michaelian K H, 2000. Infrared study of the intercalation of potassium halides in kaolinite, Clays Chy Miner., 48(1): 10-18.

[11] Noyan H, Önar M, Sankaya Y, 2006. The effect of heating on the surface area, porosity and surface acidity of a bentonite, Clars Clay Miner., 54: 375-381.

[12] Tabak A, Afsin B, Caglar B, Koksal E, 2007. Characterization and pillaring on a Turkish bentonite (Resadiye), J. Colloid Interface Sci., 313(1): 5-11.

31 He H, Ma Y, Zhu J, Yuan P, Qing Y, 2010. Organoclays prepared from montmorillonites with different cation exchange capacity and surfactant configuration, Appl. Clay Sci., 48(1-2): 67-72.

[14] Zu R, Wang T, Zhu J, Ge F, Yuan P, He H, 2010. Structural and sorptive characteristics of the cetyltrimethylammonium and polyacrylamide modified bentonite, Chem. Eng. J., 160(1): 220-225.

[15] Zhu J, Qing Y, Wang T, Zhu R, Wei J, Tao Q, Yuan P, He H, 2011. Preparation and characterization of zwitterionic surfactant-modified montmorillonites, J. Colloid Interface Sci., 360(2): 386-392.

[16] Yariv S, Lapides I, 2005. The use of thermo-XRD-analysis in the study of organo-smectite complexes, J. Therm. Anal. Cal., 80: 11-26.

[17] González-Komán D. Buiz-Cruz M D, Pozas-Tormo R Ramos-Barrado J R, Criado C, Moréna Rel L, 1993. Ionic Conduction in Sepiolas, Solid State Ionics, 61(1-3): 163-172.

[11] Cardolinski J E, Ramos L P, de Souza G F, Wypych F, 2000. Intercalation of Benamide into Kaolinite, J. Colloid & Interface Sci., 221(2): 284-290.

[19] Tunney J J, Detellier C, 1994. Preparation and Characterization of 2 Distinct Ethylene-Glycol Derivatives of Kaolinite, Clays Clay Miner., 42(5): 552-560.

[20] Johnston C T, Sposito G, Bocian D F, Birge R R, 1984. Vibrational Spectroscopic Study of the Interlamellar Kaolinite-Dimethyl Sulfoxide Complex, J. Phys. Chem., 88(24): 5959-5964.

[21] Olejnik S, Aylmore L A G, Posner A M, Quirk J P, 1968. Infrared Spectra of Kaolin Mineral-Dimethyl Sulfoxide Complexes, J. Phys. Chem., 72(1): 241-249.

[22] Komori Y, Sugahara Y, Kuroda K A, 1998. Kaolinite-NMF-Methanol Intercalation Compound as a Versatile Intermediate for Further Intercalation Reaction of Kaolinite, J. Mater. Res., 13(4): 930-934.

[23] Argast S, 1989. Expandable Sepiolite from Ninetyeast Ridge, Indian Ocean, Clays Clay Miner., 37: 371-376. [24] Tabak A, Afsin B, 2001. Firmly Adsorbed Ammonia and Pyridine Species at Activated Kaolinite Surfaces, Adsorp. Sci. Technol., 19(8): 673-679.

[25] Helmy A K, Ferreiro E A, de Bussetti S G, 1999. Surface Area Evaluation of Montmorillonite, J. Colloid & Interface Sci., 210(1): 167-171.