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Abstract – Stochastic computing (SC) is an approach used in today's re-emerging hardware environments. Known deterministic 

circuit elements are fed by binary sequences with probability, and the output sequence probability expresses a mathematical 

operation in terms of the probability of input sequences. Pulse trains expressed with probability values feed deterministic logic 

systems by expressing unipolar or bipolar encoding techniques, and an output pulse train with a probability value is obtained. 

This approach, which provides benefits in terms of complexity, low power, and durability especially for arithmetic operations, 

appears in applications with flexible fault tolerance such as computer vision. In this context, the multiplexer (MUX) logic system 

is used as a scaled adder; in other words, the sum of binary probabilistic sequences coming to the inputs of a MUX is seen at the 

output at the rate of a coefficient. In this study, the limits of the MUX structure within the scope of SC are underlined. With the 

MUX structures created with different hardware configurations, the architectures are investigated for performance. 
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I. INTRODUCTION 

Stochastic computing (SC) systems are frequently 

encountered in today's hardware environments due to their low 

power and non-complex structures. In fact, these systems, 

dating back to the 1960s, showed slow progress until the early 

2000s, but they became preferred, especially due to the 

advantages they provide with the advancement of image 

processing and neural network architectures. SC systems 

basically meet the following advantageous criteria: (i) reduced 

element complexity, (ii) low power, (iii) high parallelism, and 

(iv) fault robustness. 

Standard adder architectures include element-crowded 

digital systems such as full adder & half adder. Although such 

sensitive circuit topologies are used for deterministic and 

precise addition operations, approximate approaches offer 

low-budget solutions for applications where the sensitivity can 

be within a certain tolerance specific to the application. 

Especially due to the visual flexibility provided by image 

processing and neural network applications, these are the areas 

where the most applications are developed within the scope of 

SC. Since negligible visual errors that the human eye cannot 

perceive can be tolerated, this disadvantage of hardware 

approximation can be ignored. 

Basic arithmetic operations required for applications such as 

computer vision and neural networks; addition, subtraction, 

comparison, sorting, etc., are performed within the scope of 

SC when bitstreams feed deterministic circuits. For example, 

multiplication is simply done with a 2-input AND gate, and the 

approximate product of two numbers is obtained. Addition, 

which is the most used arithmetic operation after 

multiplication in both application areas, can be performed 

using the counter, OR gate, or multiplexer (MUX). While the 

OR gate is used to add small-value numbers, counters cause 

problems when adding signed numbers. Working with both 

signed and unsigned numbers, MUX is advantageous in terms 

of hardware complexity but disadvantageous in terms of 

accuracy. In this study, the trade-off of the MUX hardware 

structure when it is used as an accumulator within the scope of 

SC has been revealed, and the critical remarks that are crucial 

to pay attention are determined. Thus, one can drive the steps 

to be decided before using MUX by including the pre-design 

hardware plan. 

In the following sections, a review of the literature will be 

given, and then the basic SC concepts will be presented. Then, 

by mentioning the MUX usage limitations, possible points to 

be considered will be summarized for the hardware design 

issues. 

II. PREVIOUS STUDIES 

When we look at previous studies within the scope of SC, it 

is seen that architectures are generally suitable for hardware 

design of image processing and neural network systems [1]–

[7]. In addition, it is also seen that communication systems are 

performed within the scope of SC that is even be used in the 

recent robotic technologies and power systems [8]–[10]. 

Although SC efforts date back to the 1960s [11], there is a 

continuous dark period until the 2000s [12]. SC, which gained 

importance especially with the new developments in neural 

networks, quickly emerged as a popular computing area, 

especially in 2015 and after. SC-based architectures, which 

provide noise and error robustness with a lightweight neural 

network structure, result in a very acceptable range in terms of 

accuracy. 

Until 2015, it is seen that there are various examples in the 

literature, especially in the field of image processing [13], [14]. 

Besides, there are various neural network applications in 2015 

and beyond [1]–[7]. We encounter noise-sensitive SC-based 

applications in image processing, in which the MUX element 

is often used as an adder. In particular, applications that 

include kernel-based arithmetic, such as edge detection, use 

the MUX hardware structure [14]. 

In the literature, there have been major efforts in the 

implementation of efficient arithmetic hardware architecture 

unique to the application [1]–[3]. Basic arithmetic operations 

94 



International Journal of Multidisciplinary Studies and Innovative Technologies, 2021, 5(1): 94 – 97  

in SC are done using a single gate or simple logic system. 

Multiplication is based on the encoding type. In bipolar 

encoding (BPE), XNOR is the multiplier, whereas in unipolar 

encoding (UPE), AND gate is the multiplier [15]. Li et al. 

propose a new stochastic multiplier for quantized NNs [4]. On 

the other hand, there are many solutions in the accumulation 

[3], [5], [6], including single OR gate [16], modulo counter [7], 

approximate parallel counter (APC) [17], and MUX [18]. The 

accumulator hardware differs depending on the overall 

hardware structure, application requirements, and the 

bitstream encoding scheme. For instance, MUX or APC suits 

the design in SC-based full-precision neural network 

applications [19], [20], whereas a simple pop-up counter 

suffices in binarized networks [21]. Nonetheless, the use of 

APC results in an immense number of data conversions 

(Stochastic-to-Binary & Binary-to-Stochastic), since the APC 

circuit accepts binary stream and outputs a deterministic 

resultant. The use of MUXs helps us to keep SC space in the 

application, and parallel processing is widely supported. 

III. BACKGROUND 

SC basics will be covered in this section. First, looking at the 

general design framework for SC, a design pyramid is 

presented as shown below in Fig. 1. Although the algorithm 

design at the bottom of these 4-basic steps is common to all 

systems, the critical steps are hardware-software joint 

simulation and fault & noise analysis. Since SC circuits offer 

robust solutions, the analysis of the 3rd step is fundamental. At 

this point, it should be noted that the accuracy versus 

hardware efficiency balance must be considered. 

 

 

Fig. 1  Hardware design pyramid of SC systems [22]  

The essential step in this computing methodology is 

representing the operands, i.e., scalar values. Instead of the 

conventional deterministic expression known in digital 

systems, numbers are expressed in terms of probabilities. 

A. Number Representation 

This subsection summarizes the two most common number 
representation encoding techniques. While the traditional 
approach expresses the numbers as 2𝑛-bit priority format 
(where 𝑛 is the bit position); it gives a different significance to 
each bit of the binary code, which is defined using the most 
significant bit and the least significant bit. Nevertheless, in the 
random pulse processing systems, the numbers are defined by 
imitating biological signals such as high and low values occur 
on a random bit flow. Thus, the non-complex digital design and 
the noise- and fault-robust architectures are achieved for next-
generation computing environments. In the frame of the pulse 
processing, a number can be represented in the UPE or BPE 
format as making the stream stochastic, which has built-in fault 
robustness on behalf of SC. If negative numbers are to be used, 

then the unipolar encoding cannot be employed. For any stream 
with 𝑁 elements, 𝑁 ∊ ℤ+, 𝑿 represents a stream that starts from 
1st bit and ends at the 𝑁th bit s.t. 𝑿 = {𝑋1, … , 𝑋𝑁}. 𝑁 ≥ 2 as 
bitstream size is preferably set to construct 𝑿. Any mth element 
in 𝑿 as 𝑋𝑚 is either binary 1 or 0. In a stream, encoding any 

number X lies in  0 ≤
𝑋

𝑁
≤ 1 is obtained via UPE, while any 

number lies in  −1 ≤
𝑋

𝑁
≤ 1 is obtained via BPE. The majority 

of 1s, i.e., high values, in the stream is the indication of the 
positive sign, whereas the majority of 0s is the indication of the 
negative sign in BPE. The logic-1s in the stream are randomly 

permuted. The occurrence probability of 1s in UPE is 𝑃 =
𝑋

𝑁
 . 

In BPE, 𝑃 =
⌊(𝑋+𝑁)/2⌉

𝑁
 is the related probability, where ⌊ ⌉ is 

for rounding to the nearest integer. Based on these probabilities, 
the bitstreams are randomly generated thanks to the total count 
of logic-1s. For instance, if 𝑋 = 2 and 𝑁 = 8, then UPE-based 

stream (𝑃 =
2

8
) can be 𝑿 = 11000000 or 𝑿 = 10000010 or 

𝑿 = 00010010, etc., based on the random procedure applied 
through the stream generation. The total count of 1s is 2, and 
their occurrence is random, which is generally obtained by the 
Bernoulli distribution. The same example for BPE is obtained 

via 𝑃 =
⌊(2+8)/2⌉

8
=

5

8
 , and any of the random cases are 

gathered, such as 𝑿 = 11111000 or 𝑿 = 10110011 or 𝑿 =
01010111, etc. 

This way of representation is robust in terms of faults and 
soft errors. The related example of the bit-flip vulnerability is 
given in Table 1 by highlighting the outperformance of SC. 

Table 1. Vulnerabilities in traditional binary representation 

Value 

Binary 

Representation 

(8-bit) 

SC Unipolar 

Representation (UPE) 

(𝑁=8-bit) 

𝑋1 = (3)10 (𝑋1)2 = 00000011 𝑿𝟏 = 10001100 

𝑋2 = (7)10 (𝑋2)2 = 00000111 𝑿𝟐 = 11111101 

Soft Errors 

on both 

Approaches 

Applying 

soft error 

to (𝑋2)2  

Applying 

soft-error 

to 𝑿𝟐 

Bit-flip 

Position 
00000111 11111101 

Bit-flip Soft 

Error Type 
1→ 0 Bit-flip 1→ 0 Bit-flip 

Bit-flip Effect 

in Base-10 
00000011 = (3)10 11111001 = (6)10 

The Absolute 

Error 

(7)10 →  (3)10 
|7 − 3| = 4 

(7)10 →  (6)10 
|7 − 6| = 1 

SC 

Superiority 
4 > 1 and SC is more robust to the soft errors 

B. Basic Operations 

The basic operators used within the scope of SC can be 
discussed in terms of logic systems. The multiply-and-
accumulate operation, which is widely used in computer vision 
& neural network system design, is the most obvious example 
of SC-based systems. In many studies, multiplication is 
exemplified as the basic arithmetic operation [1]–[3], [5]. 
Accordingly, AND gate for UPE-based and the XNOR gate for 
BPE-based streams are used for the multiplication of binary 
stream probabilities. More precisely, the bitstreams are 
processed as bit-by-bit for the multiplication resulting in a 
bitstream with probability, 𝑃𝑌, as the product of inputs, 𝑃𝑋1 ×
𝑃𝑋2. The other crucial operation is the accumulation, a.k.a. 
addition, whose details, together with the limitations, remarks, 
and recommendations, are presented in the following section. 
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IV. SCALED ADDER: LIMITATIONS, REMARKS, AND 

RECOMMENDATIONS 

In this section, we indicate the limits that scaled adders can 
cause within the scope of SC. We will share our observations 
obtained during the designs. First, we will define the scaled 
adder and then mention possible configurations. In the 
meantime, some points will be shared based on our 
experimental observations, which the designers should take 
care of. 

A. What is a scaled adder? 

Any deterministic 2𝑚 − 𝑡𝑜 − 1 MUX is the adder of two 
stochastic operands for 𝑚 = 1. Having encoded 𝑋1 and 𝑋2 
operands in bitstreams, 𝑿𝟏 and 𝑿𝟐 streams with 𝑁 elements 
are obtained. By setting MUX selection stream, 𝑆, to 1 2⁄ , the 

output stream 𝒀 is obtained. When 𝒀 is decoded, 𝑌 =  
𝑋1+𝑋2

2
 is 

yielded as a scaled addition. In Fig. 2, an example is depicted. 

 

Fig. 2  2-input MUX example for a scaled addition  

In the software simulation of the MUX, the logic expression 
can be utilized directly, while each input (𝑋1, 𝑋2) and 
selection, S, is sourced with bitstreams. The bitstream format 
could be UPE or BPE, which does not change the hardware 
structure. This is different from the multiplication operation as 
AND & XNOR, accordingly used for related encoding format. 
In Table 2, the MATLAB-related SC adders show how simply 
creating a single line expression is possible for simulations. 

Table 2. Simulation-related single-line implementations of SC adders 

Operation MATLAB Syntax 

§Scaled Adder 

(in1 + in2)/2 
(~S)&X1 | (S)&X2 

*Unipolar Addition 

(Counter) 
sum(bitstream) 

*Small Number Adder or(X1, X2) 

X1: first input bitstream and X2: second input bitstream, 

S: selection bitstream with 
1

2
  probability for 2-to-1 MUX  

*: using readily available functions, 
§
: using bitwise operators 

 

B. Limitations 

When simulations of MUX-based SC adders are performed, 
several limitations are observed. The most important 
disadvantage that comes from using MUX is the scaling factor. 
The total result comes in a smaller proportion depending on the 
selection port (𝑆). For example, if 𝑒𝑖𝑔ℎ𝑡 numbers are to be 
accumulated, the total value obtained at the output with 3-port 
selections using 8 − 𝑡𝑜 − 1 MUX will be obtained with a scale 
of 1 23⁄ . 

The other limit is related to the decision of the structure to 
be built when a large number of terms are to be accumulated. 

Fig. 3 illustrates that a large number of terms are generated as 
random arrays from stochastic number generators (SNG) and 
then sent to a MUX tree to be accumulated after multiplied by 
XNORs, exemplifying operation from the neural networks. At 
this point, attention has also been drawn to how things can be 
easily paralleled. Because there are no costly multipliers and 
adders, only individual XNORs multiply concurrently, and 
additions are determined thanks to the MUX tree performing 
simultaneously. However, here the decision of the depth (β) and 
element size (α) of the stages connected in cascade requires an 
optimization. If β=1 is selected (which means single-stage), a 
single MUX structure with inputs as many as incoming 
elements to be accumulated is employed. On the other hand, if 
the bottom-to-top hardware design approach is used, the MUX 
tree structure is obtained by cascading small-input MUXs.  

 

Fig. 3  Decision of the cascaded MUX architecture  

To investigate MUX tree performance, we tested the 
situations that could be set up during the sum of 16 numbers 
and showed the error performance results in Table 3. The 16 
numbers to be added up are processed either with 16 − 𝑡𝑜 − 1 
MUX (blue background), or 8 − 𝑡𝑜 − 1 MUXs (yellow 
background), or 4 − 𝑡𝑜 − 1 MUXs (green background), or 2 −
𝑡𝑜 − 1 MUXs (red background). The MUX tree created by 
each may be different in terms of α and β. Beyond the 
physically obtained architecture, the error performance of the 
addition operation is given using mean absolute error (MAE) 
as an average of 1000 random accumulation trials, while the 𝑁 
bit length precision is changed from 8 to 1024. 

Table 3. MAE performance of different cascading architectures 

N 

8 16 32 64 128 256 512 1024 

0.1347 0.0942 0.0672 0.0463 0.0314 0.0232 0.0157 0.0112 

0.1305 0.0925 0.0660 0.0452 0.0328 0.0234 0.0156 0.0116 

0.1275 0.0953 0.0673 0.0472 0.0332 0.0245 0.0164 0.0117 

0.1349 0.0954 0.0684 0.0454 0.0323 0.0237 0.0169 0.0119 

2-to-1 4-to-1 8-to-1 16-to-1 

As can be seen from Table 3, the bitstream size affects the 
efficiency. The cascaded architectures from 2 − 𝑡𝑜 − 1 
(bottom-to-top) to 16 − 𝑡𝑜 − 1 (top-to-bottom) are 
investigated. Designers need to perform an analysis focusing 
on element complexity and latency, considering that there is not 
a large error difference between each architecture. 

C. Recommendations & Remarks 

According to the remarks we have obtained, when we 
support our tests with hardware simulations, it can be made 
some suggestions in terms of the limits noted. Our first 
recommendation is for the scaling factor; the value obtained in 

96 



International Journal of Multidisciplinary Studies and Innovative Technologies,   

base-10 format after decoding can be up-scaled. This can be 
performed in the context of application; since there can be an 
easier solution. For example, in a neural network, since the total 
accumulation coming to a neuron from the preceding layer is 
directly used in the activation function as a pre-activation value, 
the range of the activation function can be normalized to the 
corresponding range. Thus, no up-scaling, i.e., an extra 
multiplication, is required. 

Secondly, the indicated design combination of a MUX tree 
is investigated, and the issues related to the hardware resource 
utilization & latency are highlighted. Since error for small 
group addition does not differ significantly, the bottom-to-top 
and top-to-bottom design considerations are crucial for their 
hardware complexity and latency. To the best of our 
experiences, bottom-to-top design requires many selection port 
sources and causes a delay. However, it supplies preferable 
randomness, while the top-to-bottom design is more efficient in 
terms of element complexity and delay. At this point, designers 
need to balance the two by paying attention to the contradiction.  

Table 4. Observation on the MUX usage of different network architectures 

 Multiplication Accumulation 

SC-FPNN 

XNOR 

MUX-tree, APC 

SC-QNN MUX-tree, APC 

SC-BNN 
Pop-count, modulo-T counter, 

parallel modulo-T counter 

 

Finally, we deepen our recommendations and remarks on the 

use of the MUX SC primitive in neural networks and present 

observation of different network architectures in Table 4. 

Considering three neural network architectures, we present 

which ones will be used for which network in the presence of 

other accumulators as well as MUX usage. For this, the 

versions of the full-precision neural network without 

quantization (FPNN), a quantized neural network with 2-or-

more-bit quantization (QNN), and binarized neural network 

(BNN) structures are decorated with the bitstreams; namely, 

SC-FPNN, SC-QNN, and SC-BNN. While MUX is an 

alternative adder for SC-FPNN and SC-QNN, it is emphasized 

that MUX is not included in SC-BNN. A simple counting 

operation handles the accumulation operation in SC-BNNs. 

V. CONCLUSION 

In this study, the limits and suggestions of a frequently used 

hardware element for SC, namely MUX, are mentioned. 

Limits and solutions are suggested for both the scale factor and 

the bulk accumulation design, i.e., the MUX tree. Combining 

our observations with hardware simulation from a deeper 

perspective, we highlighted that designers should consider the 

required randomness, element complexity, and latency. On the 

other hand, we conclude that MUX usage should be decided 

based on an application like neural network structures. Several 

topologies like BNN do not require more than a single counter 

in SC-based design; therefore, MUX has an alternative. 
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