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Abstract: Some relations involving the Ricci and scalar curvatures of totally η -umbilical real hypersur-

faces of a complex space form are examined. With the help of these relations, some results on totally

η -umbilical real hypersurfaces of a complex space form are given. Furthermore, these results are discussed

on totally η -umbilical real hypersurfaces of the 6-dimensional complex space form. Some characterizations

dealing totally η -umbilical real hypersurfaces of the 6-dimensional complex space form are obtained.
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1. Introduction

Since Riemannian curvature invariants play a significant role in classifying Riemannian manifolds

and their submanifolds, borrowing a term from biology, Chen called these invariants as Riemannian

DNA for Riemannian manifolds in [7–9] and established some important relations between the

intrinsic curvature invariants and extrinsic curvature invariants for submanifolds of a Riemannian
manifolds in 1990s. cf. [4–6]. Recently, many authors investigated these kind of inequalities

on submanifolds of various Riemannian manifolds such as Hermitian manifolds, contact metric

manifolds and Riemannian product manifolds cf. [1, 2, 12, 13, 18, 20, 24] etc.

On the other hand, the study of real hypersurfaces in complex space forms has been an

attractive topic in differential geometry since this kind of hypersurfaces admits a almost contact

structure induced from the almost complex structure defined on a complex space form. These

properties present us very rich geometric view point. Real hypersurface of complex space forms

are examined by various geometers cf. [3, 10, 14, 15] etc. In [21], Tashiro and Tachibana proved

that there do not exist any totally umbilical real hypersurface of non flat complex space and

therefore the authors introduced the notion of totally η -umbilical real hypersurface as follows:

A real hypersurface of a complex space form is said to be η -umbilical if the shape operator
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AN satisfies the following relation:

ANX = aX + bη (X) ξ (1)

for any tangent vector field X on M and some functions a and b . Here ξ is known as the structure

vector field on tangent space of real hypersurface.

Later, totally η -umbilical real hypersurfaces of a complex projective space and a complex

hyperbolic space are determined by Takagi [22] and Montiel [19]. Totally η -umbilical real hypersur-

faces and ruled real hypersurfaces of a complex space form by the help of holomorphic distribution

are investigated by Kon in [16].

Motivated by these facts, we study the Riemannian curvature invariants for totally η -

umbilical real hypersurfaces of a complex space form and we obtain some relations for these

hypersurfaces. With the help of these relations, we get some special characterizations for these

hypersurfaces of 6-dimensional complex space forms.

2. Preliminaries

Let M̃ be an m-dimensional Riemannian manifold equipped with a Riemannian metric g̃ and Π

be a plane section spanned by linearly independent vector fields X and Y on M̃ . The sectional

curvature of Π denoted by K̃ (Π) and it is defined by [17]

K̃ (Π) ≡ K̃ (X,Y ) =
g̃ (R̃ (X,Y )Y,X)

g (X,X) g (Y,Y ) − g (X,Y )2
(2)

where R̃ denotes the Riemannian curvature tensor of M̃ . The manifold (M̃, g̃) is called as a space

form if the value of K̃ is constant for any tangent plane Π at every point p ∈ M̃ . A space form of

constant curvature c is generally denoted by M̃(c) and the following equation holds

R̃ (X,Y )Z = c

4
[g̃ (Y,Z)X − g̃ (X,Z)Y ] . (3)

We note that a space form M̃(c) becomes

(i) The Euclidean space if c = 0.

(ii) The sphere if c > 0.

(iii) The hyperbolic space if c < 0.

Now let (M̃, g̃) be a Riemannian manifold and {e1, . . . , em} be an orthonormal basis for

TpM̃ at a point p ∈ M̃ . The Ricci tensor R̃ic is defined by

R̃ic (X,Y ) =
m

∑
j=1

g̃ (R̃(ej ,X)Y, ej) (4)
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for any X,Y ∈ TpM̃ . For a fixed i ∈ {1, . . . ,m} , we have

R̃ic (ei, ei) ≡ R̃ic (ei) =
m

∑
j≠i

K̃(ei, ej). (5)

Furthermore, the scalar curvature τ̃ at p is defined by

τ̃ (p) =∑
i<j

K̃(ei, ej). (6)

Let Πk be a k -plane subsection of TpM̃ and X be a unit vector in Πk . We choose an

orthonormal basis {e1, ..., ek} of Πk such that e1 =X . Then, the Ricci curvature RicΠk
of Πk at

X is defined by

RicΠk
(X) = K̃12 + K̃13 +⋯ + K̃1k. (7)

Here, RicΠk
(X) is called as k -Ricci curvature [6]. Thus for each fixed ei , i ∈ {1, ..., k} we get

RicΠk
(ei) =

k

∑
j≠i

K̃(ei, ej). (8)

The scalar curvature τ̃ (Πk) of the k -plane section Πk is given by

τ̃ (Πk) = ∑
1≤i<j≤k

K̃(ei, ej). (9)

From (9) , we have

τ̃ (Πk) =
1

2

k

∑
i=1

k

∑
j≠i

K̃(ei, ej) =
1

2

n

∑
i=1

RicΠk
(ei). (10)

Let (M,g) be an n -dimensional submanifold of an m-dimensional Riemannian manifold

(M̃, g̃) with the induced metric g from g̃ . The Gauss and Weingarten formulas are given

respectively, by

∇̃XY = ∇XY + h (X,Y ) and ∇̃XN = −ANX +∇⊥XN (11)

for all X,Y are any two tangent vector fields on the tangent bundle TM and N is the unit normal

vector field on the normal bundle T ⊥M . Here, ∇̃ , ∇ and ∇⊥ are, respectively, the Riemannian,

induced Riemannian and induced normal connections in M̃ , M and the normal bundle T ⊥M of

M , respectively, and h is the second fundamental form related to the shape operator A by

g̃ (h (X,Y ) ,N) = g (ANX,Y ) . (12)
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Let R and R̃ denotes the Riemannian curvature tensor fields of M and M̃ respectively.

The equation of Gauss is given by

g (R(X,Y )Z,W ) = g̃ (R̃(X,Y )Z,W ) + g̃ (h(X,W ), h(Y,Z))

−g̃ (h(X,Z), h(Y,W )) (13)

for all X,Y,Z,W ∈ TM .

The mean curvature vector H is given by H = 1
n
trace(h) . The submanifold M is called

totally geodesic in M̃ if h = 0, and minimal if H = 0. If h (X,Y ) = g (X,Y )H for all X,Y ∈ TM ,

then M is called totally umbilical [4].

Let {e1, . . . , en} be an orthonormal basis of the tangent space TpM and er (r = n + 1, . . . ,m)

belongs to an orthonormal basis {en+1, . . . , em} of the normal space T ⊥pM . Then we can write

hr
ij = g̃(h (ei, ej) , er) and ∥h∥2 =

n

∑
i,j=1

g̃(h (ei, ej) , h (ei, ej)). (14)

From (13), we have

K(ei, ej) = K̃(ei, ej) +
m

∑
r=n+1

(hr
iih

r
jj − (hr

ij)2) (15)

where Kij and K̃ij denote the sectional curvature of the plane section spanned by ei and ej at

p in the submanifold M and in the ambient manifold M̃ respectively. Therefore, it follows from

(15) that

2τ (p) = 2τ̃ (TpM) + n2 ∥H∥2 − ∥h∥2 (16)

where

τ̃ (TpM) = ∑
1≤i<j≤n

K̃(ei, ej) (17)

denotes the scalar curvature of the n -plane section TpM in the ambient manifold M̃ .

In view of (16), we clearly have

τ (p) ≤ 1

2
n2 ∥H∥2 + τ̃ (TpM) . (18)

The equality case of (18) satisfies if and only if M is totally geodesic [11].

An improved case of the inequality (18), the following theorem could be given:
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Theorem 2.1 [11, Theorem 4.2] For an n-dimensional submanifold M in a Riemannian mani-

fold, at each point p ∈M , we have

τ(p) ≤ n (n − 1)
2

∥H∥2 + τ̃ (TpM) (19)

with equality if and only if p is a totally umbilical point.

Now, we shall recall the Chen-Ricci inequality (20) in the following:

Theorem 2.2 [11, Theorem 6.1] Let M be an n-dimensional submanifold of a Riemannian

manifold. Then, the following statements are true.

(a) For any unit vector X ∈ TpM , it follows that

Ric (X) ≤ 1

4
n2∥H∥2 + R̃ic(TpM) (X) , (20)

where R̃ic(TpM) (X) is the n-Ricci curvature of TpM at X ∈ T 1
pM with respect to the

ambient manifold M̃ .

(b) The equality case of (20) is satisfied by a vector X ∈ TpM if and only if

{ h (X,Y ) = 0, for all Y ∈ TpM orthogonal to X,
2h (X,X) = nH (p) , (21)

(c) The equality case of (20) holds for all unit tangent vector X ∈ TpM if and only if either p

is a totally geodesic point or n = 2 and p is a totally umbilical point.

3. Real Hypersurfaces of Complex Space Forms

Let M̃ be an almost Hermitian manifold with an almost Hermitian structure (J, g̃) such that we

have

J2 = −I (22)

and

g̃ (JX,JY ) = g̃ (X,Y ) , X,Y ∈ TM̃. (23)

If J is integrable, that is, the Nijenhuis tensor [J, J] of J vanishes then the almost Hermitian

manifold is called a Hermitian manifold.

Let (M̃, J, g̃) be an almost Hermitian manifold and ∇̃ be the Riemannian connection of the

Riemannian metric g̃ . The manifold is called a Kaehler manifold [23] if

∇̃J = 0. (24)
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Similar to real space forms, in complex manifolds, we have the notion of complex space

form. A Kaehler manifold M̃ equipped with a Kaehler structure (J, g̃, ∇̃) , which has constant

holomorphic sectional curvatures 4c , is said to be a complex space form M̃ (4c) ; and its Riemann

curvature tensor R̃ is given by [23]

R̃ (X,Y,Z,W ) = c{g̃ (X,W ) g̃ (Y,Z) − g̃ (X,Z) g̃ (Y,W )

+g̃ (X,JZ) g̃ (JY,W ) − g̃ (Y, JZ) g̃ (JX,W )

+2g̃ (X,JY ) g̃ (JZ,W )} (25)

for any X,Y,Z,W ∈ TM̃ .

Let M̃ (4c) be a 2n-dimensional complex space form with constant holomorphic sectional

curvature 4c and (M,g) be a real (2n − 1) -dimensional hypersurface immersed in M̃ (4c) with

induced metric g . For a unit vector field ξ ∈ TM , we assume that Jξ = N , where N is the unit

normal vector field. In this case, we write for any X ∈ TM that

JX = φX + η (X)N and JN = −ξ (26)

where φX is the tangential part of JX and η is 1− form on TM satisfying

η(X) = g̃(JX,N) = g(X,ξ). (27)

For any real hypersurface M , there exist the following relations for any X ∈ TM :

η (φX) = 0, (28)

φ2 (X) = −X + η (X) ξ, (29)

φξ = 0. (30)

Furthermore, we have

g (φX,Y ) + g (X,φY ) = 0

and

g (φX,φY ) = g (X,Y ) − η (X)η (Y ) . (32)

From the above equalities, it is clear that the hypersurface M is an almost contact metric manifold

with contact structure (φ, ξ, η, g) . For more details, we refer to [16].

Let ∇̃ be the Riemannian connection of M̃ (4c) and ∇ be the induced Riemannian connec-

tion on M . Then the Gauss and Weingarten formulas are given respectively by

∇̃XY = ∇XY + g (ANX,Y )N, (33)

∇̃XN = −ANX (34)
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Özlem Deniz and Mehmet Gülbahar / FCMS

for any X ∈ TM and N ∈ T �M .

Using the fact that (φ, ξ, η, g) is the contact metric structure in the Gauss and Weingarten

formulas, we have

η (∇Xξ) = 0, ∇Xξ = φANX (35)

and

(∇Xφ)Y = η (Y )ANX − g (ANX,Y ) ξ. (36)

Now let us denote the Riemannian curvature tensor field on M by R . From (13) and (25) ,

we get

R (X,Y )Z = c{g (Y,Z)X − g (X,Z)Y + g (φY,Z)φX

−g (φX,Z)φY − 2g (φX,Y )φZ} + g (ANY,Z)ANX

−g (ANX,Z)ANY (37)

and

(∇XA)Y − (∇Y A)X = c{η (X)φY − η (Y )φX − 2g (φX,Y ) ξ} (38)

for any X,Y,Z ∈ TM [16].

4. Main Results

Let M̃(4c) is an 2n dimensional complex space form and M be a real hypersurface of M̃(4c) .

Let us define a distribution T0 , so called holomorphic distribution on M̃(4c) , given by

T0 = {X ∈ TpM ∶ η (X) = 0} . (39)

If T0 is integrable and its integral manifold is a totally geodesic submanifold, then M is called as

a ruled real hypersurface. A hypersurface M of M̃(4c) is said to be η -umbilical if the following

relation holds:

AX = aX + bη (X) ξ (40)

for any vector field X ∈ TM and some functions a and b [21].

Let M be an (2n − 1)-dimensional real hypersurface of a complex space form. Let T0

denotes the holomorphic distribution on M . Assume that we have g (AX,Y ) = ag (X,Y ) for any

X,Y ∈ T0 . Then we can consider an orthonormal basis {e1, e2, ..., e2n−2, ξ} such that the shape

operator takes form as follows [16]:

AN =
⎛
⎜⎜⎜
⎝

a . . . 0 h1

⋮ ⋱ ⋮ ⋮
0 . . . a h2n−2
h1 . . . h2n−2 b

⎞
⎟⎟⎟
⎠

(41)
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where hi = g(ANei, ξ) for i ∈ {1, . . . ,2n} and b = g(ANξ, ξ) .

Now we shall recall the following theorem:

Theorem 4.1 [16, Theorem 3.1] Let M be a real hypersurface of a complex space form M̃(4c)

and T0 be the holomorphic distribution on M . If the following equation holds

g (AX,Y ) = ag (X,Y )

for any X,Y ∈ T0 , then M is either totally η -umbilical or it is a locally ruled real hypersurface.

Taking into consideration the above facts, we obtain followings:

Lemma 4.2 Let M be an (2n−1)-dimensional real hypersurface of a complex space form M̃(4c)

and T0 be the holomorphic distribution on M . Then we have the following equalities:

(i) For any unit vector X in T0 , we have

R̃icTpM (X) = c{2n + 3} . (42)

(ii) For the structure vector field ξ of M , we have

R̃icTpM (ξ) = 2nc.

Proof Under the assumption, let us choose an orthonormal basis {e1, e2, ..., e2n−2, ξ} on TM .

Putting X = ei and Y = ej in (37) , we have

R̃ (ei, ej , ej , ei) = c{1 + 3g (Jej , ei)2} . (43)

Furthermore, if write ξ instead of ej , then we get

R̃ (ei, ξ, ξ, ei) = c{1 + 3g (Jξ, ei)2}

= c{1 + 3g (N,ei)2}

= c. (44)

Using the fact that

R̃icTpM (ej) = [
2n−1
∑
i=1

R̃ (ei, ej , ej , ei)] + R̃ (ξ, ei, ei, ξ) (45)

and considering the equation (43) and (44) , we obtain

R̃icTpM (ej) = c{2n + 3} . (46)
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Putting X = ej in (46) , the proof of (i) statement is completed.

The proof of statement (ii) is straightforward by using the fact

R̃icTpM (ξ) = [
2n−1
∑
i=1

R̃ (ei, ξ, ξei)] . (47)

◻
Taking into account of the Gauss equation and Lemma 4.2, we obtain the following lemma:

Lemma 4.3 Let M be an (2n+1)-dimensional real hypersurface of a complex space form M̃(4c)

and T0 be the holomorphic distribution on M . Then we have the following equalities:

(i) For any unit vector X in T0 , we have

Ric (X) = (2n + 1) c + (2n − 3)a2 + ab. (48)

(ii) For the structure vector field ξ of M , we have

Ric (ξ) = (2n − 2) c + (2n − 2)ab. (49)

Lemma 4.4 Let M be an (2n−1)-dimensional real hypersurface of a complex space form M̃(4c) .

Then we have

H (p) = 1

2n − 1
[(

2n−2
∑
i=1

aN) + bN] . (50)

Proof From the definition of mean curvature vector field, we write

H (p) = 1

2n − 1
[(

2n−2
∑
i=1

h (ei, ei)) + h (ξ, ξ)] . (51)

On the other hand, we have

h (ei, ei) = g (Aei, ei)N

= ag (ei, ei)N

= aN (52)

and

h (ξ, ξ) = g (Aξ, ξ)N

= bN. (53)

If we put (52) and (53) in (51) we obtain the equation (50) . ◻

From (9) and Lemma 4.2, we get the following lemma:
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Lemma 4.5 Let M be an (2n−1)-dimensional real hypersurface of a complex space form M̃(4c) .

Then we have

τ̃ (TpM) = (2n2 + 3n − 3

2
) c. (54)

From (16), Lemma 4.4 and Lemma 4.6, we obtain the following lemma:

Lemma 4.6 Let M be an (2n−1)-dimensional real hypersurface of a complex space form M̃(4c) .

Then we have

τ (p) = (n − 1) (2n + 2) c + (n − 1) (2n − 3)a2 + 2 (n − 1)ab. (55)

Proposition 4.7 Let M be an (2n − 1)-dimensional real hypersurface of a complex space form

M̃(4c) . Then the following inequality holds:

[(2n − 4)a + b]2 ≥ −8c. (56)

Proof Considering Lemma 4.2, Lemma 4.3 and Lemma 4.4 in (20) , the proof is straightforward.

◻
For the special case n = 3, we have the following corollaries:

Corollary 4.8 Let M be a real hypersurface of a 6-dimensional complex space form M̃ . Then

we have

(2a + b)2 ≥ −8c. (57)

The equality case of (57) holds for all p ∈ M if and only if M is totally geodesic and M̃ is the

complex Euclidean space.

Corollary 4.9 Let M be a real hypersurface of a 6-dimensional complex space form M̃ . If a = − b
2

then c ≥ 0 .

Proposition 4.10 Let M be an (2n − 1)-dimensional real hypersurface of a complex space form

M̃(4c) . Then the following inequality holds:

(−2n + 2)a2 − b2 ≤ (6n + 1) c. (58)

Proof Using Lemma 4.4, Lemma 4.5, Lemma 4.6 in (20) , the proof is straightforward. ◻

For the special case n = 3, we have the following corollaries:
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Corollary 4.11 Let M be a real hypersurface of a 6-dimensional complex space form M̃ . Then

we have the following inequality:

4a2 + b2 ≥ −19c. (59)

The equality case of this inequality holds if and only if M is a totally geodesic hypersurface of

complex Euclidean space.
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